Skip to main content
Log in

Concentration of Multi-overlaps for Random Dilute Ferromagnetic Spin Models

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider mean field ferromagnetic spin models on dilute random graphs and prove that, with suitable one-body infinitesimal perturbations added to the Hamiltonian, the multi-overlaps concentrate for all temperatures, both with respect to the thermal Gibbs average and the quenched randomness. Results of this nature have been known only for the lowest order overlaps, at high temperature or on the Nishimori line. Here we treat all multi-overlaps by a non-trivial application of Griffiths–Kelly–Sherman correlation inequalities. Our results apply in particular to the pure and mixed p-spin ferromagnets on random dilute Erdoes–Rényi hypergraphs. On physical grounds one expects that multi-overlap concentration is an important ingredient for the validity of the cavity (or replica-symmetric) formula for the pressure of mean field models. However rigorously establishing this formula for the p-spin ferromagnet on a random dilute hypergraph remains an open problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. By infinitesimal perturbations we mean perturbations that do not change the thermodynamic limit of the pressure when we take the limit of zero perturbation after the thermodynamic limit.

  2. With minor adjustments in the formulation of the models we can also cover ferromagnets on dense graphs.

  3. It is an open problem to assess if these can be dropped and the fluctuations controlled only thanks to the homogeneous perturbation.

  4. Interpolating from \(t=0\) to 1 over \(\ln \sum _{{\varvec{\sigma }}\in \{\pm 1\}^n}\exp (-{\mathcal H}_t({\varvec{\sigma }}))\) with \({\mathcal H}_t({\varvec{\sigma }})\equiv -\sum _{X:J_X\in S_1\cup S_2} J_X \sigma _X-t\sum _{X:J_X\in S_{12}} J_X \sigma _X\) shows that \(\ln {\mathcal {Z}}(S) = \ln {\mathcal {Z}}(S_1) + \ln {\mathcal {Z}}(S_2)+\sum _{X:J_X\in S_{12}}J_X\int _0^1dt\langle \sigma _X\rangle _t\) (using that \(S_1\) and \(S_2\) are disjoint). Then the first GKS inequality gives \(\langle \sigma _X\rangle _t\ge 0\). As \(J_X\ge 0\) too, we obtain the result.

References

  1. Mézard, M., Parisi, G., Virasoro, M.-A.: Spin Glass Theory and Beyond. World Scientific, Singapore (1987)

    MATH  Google Scholar 

  2. Pastur, L.A., Shcherbina, M.V.: Absence of self-averaging of the order parameter in the sherrington-kirkpatrick model. J. Stat. Phys. 62(1), 1–19 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  3. Shcherbina, M.V.: More about absence of selfaverageness of the order parameter in the sherrington-kirkpatrick model. CARR Reports in Mathematical Physics, n. 3/91, Department of Mathematics, University of Rome “La Sapienza”, (1991)

  4. Ghirlanda, S., Guerra, F.: General properties of overlap probability distributions in disordered spin systems. towards parisi ultrametricity. J. Phys. A Math. Gen. 31(46), 9149 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  5. Guerra, F.: An introduction to mean field spin glass theory: methods and results. Les Houches Summer School Proceedings 83, 12 (2006)

    MATH  Google Scholar 

  6. Guerra, F.: About the overlap distribution in mean field spin glass models. Int. J. Mod. Phys. B 10, 12 (2012)

    MathSciNet  Google Scholar 

  7. Guerra, F., Toninelli, F.L.: The thermodynamic limit in mean field spin glass models. Commun. Math. Phys. 230(1), 71–79 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  8. Guerra, F., Toninelli, F.L.: Quadratic replica coupling in the sherrington-kirkpatrick mean field spin glass model. J. Math. Phys. 43(7), 3704–3716 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  9. Aizenman, M., Contucci, P.: On the stability of the quenched state in mean-field spin-glass models. J. Stat. Phys. 92(5), 765–783 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  10. Chatterjee, S.: Superconcentration and Related Topics. Springer Monographs in Mathematics. Springer, New York (2014)

    Book  Google Scholar 

  11. Talagrand, M.: Mean Field Models for Spin Glasses: Volume I: Basic Examples, vol. 54. Springer, New York (2010)

  12. Talagrand, M.: Mean Field Models for Spin Glasses: Volume II: Advanced Replica-Symmetry and Low Temperature, vol. 55. Springer, New York (2011)

  13. Panchenko, D.: The Sherrington-Kirkpatrick Model. Springer Monographs in Mathematics. Springer, New York (2013)

    Book  Google Scholar 

  14. Chatterjee, S.: Absence of replica symmetry breaking in the random field ising model. Commun. Math. Phys. 337(1), 93–102 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  15. Barra, A., De Sanctis, L.: Overlap fluctuations from the boltzmann random overlap structure. J. Math. Phys. 47(10), 103305 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  16. Barra, A., De Sanctis, L.: Stability properties and probability distributions of multi-overlaps in dilute spin glasses. J. Stat. Mech. Theory Exp. 2007(08), P08025 (2007)

    Article  Google Scholar 

  17. Franz, S., Leone, M., Toninelli, F.L.: Replica bounds for diluted non-poissonian spin systems. J. Phys. A 36(43), 10967 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  18. De Sanctis, L., Franz, S.: Self-averaging identities for random spin systems. In: de Monvel, A.B., Bovier, A. (eds.) Spin Glasses: Statics and Dynamics, pp. 123–142. Birkhäuser Basel, Basel (2009)

    Chapter  Google Scholar 

  19. Tanaka, T.: A statistical-mechanics approach to large-system analysis of cdma multiuser detectors. IEEE Trans. Inf. Theory 48(11), 2888–2910 (2002)

    Article  MathSciNet  Google Scholar 

  20. Korada, S.B., Macris, N.: Tight bounds on the capacity of binary input random cdma systems. IEEE Trans. Inf. Theory 56(11), 5590–5613 (2010)

    Article  MathSciNet  Google Scholar 

  21. Montanari, A.: Tight bounds for ldpc and ldgm codes under map decoding. IEEE Trans. Inf. Theory 51(9), 3221–3246 (2005)

    Article  MathSciNet  Google Scholar 

  22. Kudekar, S., Macris, N.: Sharp bounds for optimal decoding of low-density parity-check codes. IEEE Trans. Inf. Theory 55(10), 4635–4650 (2009)

    Article  MathSciNet  Google Scholar 

  23. Abbe, E.: Community detection and stochastic block models. Found. Trends® Commun. Inf. Theory 14(1–2), 1–162 (2018)

    MATH  Google Scholar 

  24. Guerra, F.: An introduction to mean field spin glass theory: methods and results. Math. Stat. Phys. 2005, 243–271 (2005)

    MATH  Google Scholar 

  25. Barbier, J., Macris, N.: The adaptive interpolation method: a simple scheme to prove replica formulas in bayesian inference. Probab. Theory Relat. Fields 174, 1133–1185 (2018)

    Article  MathSciNet  Google Scholar 

  26. Barbier, J., Macris, N., Miolane, L.: The layered structure of tensor estimation and its mutual information. In 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton), September (2017)

  27. Barbier, J., Krzakala, F., Macris, N., Miolane, L., Zdeborová, L.: Optimal errors and phase transitions in high-dimensional generalized linear models. Proc. Natl Acad. Sci. 116(12), 5451–5460 (2019)

    Article  MathSciNet  Google Scholar 

  28. Barbier, J., Macris, N., Maillard, A., Krzakala, F.: The Mutual Information in Random Linear Estimation Beyond i.i.d. Matrices. In IEEE International Symposium on Information Theory (ISIT), (2018)

  29. Aubin, B., Maillard, A., Barbier, J., Krzakala, F., Macris, N., Zdeborová, L.: The committee machine: Computational to statistical gaps in learning a two-layers neural network. In Advances in Neural Information Processing Systems, vol. 31, pp. 3226–3237. Curran Associates, Inc., (2018)

  30. Gabrié, M., Manoel, A., Luneau, C., Barbier, J., Macris, N., Krzakala, F., Zdeborová, L.: Entropy and mutual information in models of deep neural networks. In Advances in Neural Information Processing Systems, vol. 31, pp 1824–1834. Curran Associates, Inc. (2018)

  31. Dembo, A., Montanari, A.: Ising models on locally tree-like graphs. Ann. Appl. Probab. 20, 565–592 (2010)

    Article  MathSciNet  Google Scholar 

  32. Coja-Oghlan, A., Krzakala, F., Perkins, W., Zdeborová, L.: Information-theoretic thresholds from the cavity method. Adv. Math. 333, 694–795 (2018)

    Article  MathSciNet  Google Scholar 

  33. Aizenman, M., Sims, R., Starr, S.L.: Extended variational principle for the Sherrington-Kirkpatrick spin-glass model. Phys. Rev. B 68(21), 214403 (2003)

    Article  ADS  Google Scholar 

  34. Franz, S., Leone, M.: Replica bounds for optimization problems and diluted spin systems. J. Stat. Phys. 111(3), 535–564 (2003)

    Article  MathSciNet  Google Scholar 

  35. Panchenko, D., Talagrand, M.: Bounds for diluted mean-fields spin glass models. Prob. Theory Relat. Fields 130(3), 319–336 (2004)

    Article  MathSciNet  Google Scholar 

  36. Bayati, M., Gamarnik, D., Tetali, P.: Combinatorial approach to the interpolation method and scaling limits in sparse random graphs. In Proceedings of the forty-second ACM symposium on Theory of computing, ACM, Cambridge, pp 105–114 (2010)

  37. Salez, J.: The interpolation method for random graphs with prescribed degrees. Comb. Prob. Comput. 25(3), 436–447 (2016)

    Article  MathSciNet  Google Scholar 

  38. Montanari, A.: Estimating random variables from random sparse observations. Eur. Trans. Telecommun. 19, 385–403 (2008)

    Article  Google Scholar 

  39. Liggett, T.M.: T. E. Harris’ contributions to interacting particle systems and percolation. Ann. Probab. 39(03), 407–416 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was done while J.B. was affiliated with EPFL. J.B. and C.L.C. acknowledge funding from the Swiss National Science Foundation Grant 200021-156672. J.B. would like to particularly thank Amin Coja-Oghlan for suggesting him to work on this problem and for the very many interesting discussions they had when he visited Dr. Coja-Oghlan’s group in Francfurt, as well as Florent Krzakala for insightful comments, Adriano Barra for pointing relevant references and Silvio Franz for clarifications on some of his works. J.B. also deeply thanks Nadia Bersier for her support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Macris.

Additional information

Communicated by Michael Aizenman.

Dedicated to Joel Lebowitz.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Some Technicalities

1.1 Proof of the Approximation Inequality (7)

Note that

$$\begin{aligned} \big | p_{n}(h_0, h_1, \alpha ) - p_{n}(0,0,0) \big |&= \big | p_{n}(h_0, h_1, \alpha ) - p_{n}(0,h_1,0) \big | \\&\le \big | p_{n}(h_0, h_1, \alpha ) - p_{n}(0, h_1, \alpha ) \big |\\&\quad + \big | p_{n}(0, h_1, \alpha ) - p_{n}(0, h_1, 0) \big |\,. \end{aligned}$$

We have \(| \frac{d p_{n}(h_0, h_1, \alpha )}{d{h_0}}| = |{\mathbb {E}}\langle Q_1\rangle | \le 1\) and from (23) we also have \(| \frac{d p_n(0, h_1, \alpha )}{d\alpha }| \le h_1 n^{-(1-\theta )}\). Thus by the mean value theorem we obtain (7), i.e. \(|p_n(h_0,h_1,\alpha ) - p_n(0,0,0)| \le h_0 + \alpha h_1n^{-(1-\theta )}\).

1.2 A Property of the Poisson Distribution

Any function \(g: \mathbb {N} \rightarrow \mathbb {R}\) of a random variable \(X\sim \mathrm{Poi}(\nu )\) with Poisson distribution and mean \(\nu \), and such that both \(\mathbb {E}\,g(X)\) and \(\mathbb {E}\,g(X+1)\) exist, satisfies

$$\begin{aligned} \frac{d \, \mathbb {E}\,g(X)}{d \nu }&= \sum _{k=0}^{\infty } \frac{d}{d\nu }\bigg \{\frac{\nu ^{k} e^{-\nu }}{k!}\bigg \} g(k) = \sum _{k=1}^{\infty } \frac{\nu ^{k-1} e^{-\nu }}{(k-1)!} g(k) - \sum _{k=0}^{\infty } \frac{\nu ^k e^{-\nu }}{k!} g(k) \nonumber \\&= \sum _{k=0}^{\infty } \frac{\nu ^{k} e^{-\nu }}{k!} g(k + 1) - \sum _{k=0}^{\infty } \frac{\nu ^k e^{-\nu }}{k!} g(k) = \mathbb {E}\,g(X+1) - \mathbb {E}\, g(X)\,. \end{aligned}$$
(45)

1.3 Multivariate Harris Inequality

For completeness we provide here a simple proof of the multivariate version of the Harris inequality. We refer to [39] for more information.

Lemma 12

(Multivariate version of the Harris inequality) Let \(g,\tilde{g}:\mathbb {R}^n\mapsto \mathbb {R}\) be two functions of the random vector \(\mathbf{x }= (x_1, \ldots , x_n)\) where all components are independent random variables. If for all \(i \in \{1, \ldots , n\}\)g and \(\tilde{g}\) are both monotone w.r.t. \(x_i\) with same monotonicity, i.e. \(\partial _{x_i}g(\mathbf{x })\,\partial _{x_i}\tilde{g}(\mathbf{x })\ge 0 \ \forall \ i\), then \(\mathbb {E}[g(\mathbf{x })\, \tilde{g}(\mathbf{x })] - \mathbb {E}\,g(\mathbf{x }) \, \mathbb {E}\,\tilde{g}(\mathbf{x }) \ge 0\).

Proof

Let \(\mathbf{x }_i^j \equiv (x_i, x_{i+1}, \ldots , x_{j})\). The monotonicity w.r.t. \(x_1\) implies

$$\begin{aligned} \mathbb {E}_{x_1} \mathbb {E}_{x'_1} \big [ \big ( g(x_1, \mathbf{x }_2^n) - g(x'_1, \mathbf{x }_2^n) \big ) \big ( \tilde{g}(x_1, \mathbf{x }_2^n) - \tilde{g}(x'_1, \mathbf{x }_2^n) \big ) \big ] \ge 0 \end{aligned}$$

which by expanding the product can be simplified to

$$\begin{aligned} \mathbb {E}_{x_1}[g(\mathbf{x }) \,\tilde{g}(\mathbf{x })]-\mathbb {E}_{x_1}g(\mathbf{x })\, \mathbb {E}_{x_1}\tilde{g}(\mathbf{x }) \ge 0\,. \end{aligned}$$

The proof then proceeds by induction. Suppose

$$\begin{aligned} \mathbb {E}_{\mathbf{x }_1^{i-1}}[g(\mathbf{x })\, \tilde{g}(\mathbf{x })]-\mathbb {E}_{\mathbf{x }_1^{i-1}}g(\mathbf{x })\, \mathbb {E}_{\mathbf{x }_1^{i-1}}\tilde{g}(\mathbf{x }) \ge 0\,. \end{aligned}$$
(46)

Again, the monotonicity w.r.t. \(x_i\) implies

$$\begin{aligned}&\mathbb {E}_{x_i} \mathbb {E}_{x'_i} \big [ \big ( \mathbb {E}_{\mathbf{x }_1^{i-1}} g(\mathbf{x }_1^{i-1}, x_i, \mathbf{x }_{i+1}^n) - \mathbb {E}_{\mathbf{x }_1^{i-1}} g(\mathbf{x }_1^{i-1}, x'_i, \mathbf{x }_{i+1}^n) \big ) \\&\quad \cdot \big ( \mathbb {E}_{\mathbf{x }_1^{i-1}} \tilde{g}(\mathbf{x }_1^{i-1}, x_i, \mathbf{x }_{i+1}^n) - \mathbb {E}_{\mathbf{x }_1^{i-1}} \tilde{g}(\mathbf{x }_1^{i-1}, x'_i, \mathbf{x }_{i+1}^n) \big ) \big ] \ge 0 \end{aligned}$$

which can be simplified to

$$\begin{aligned} \mathbb {E}_{x_i} \big [ \mathbb {E}_{\mathbf{x }_1^{i-1}} g(\mathbf{x }) \, \mathbb {E}_{\mathbf{x }_1^{i-1}} \tilde{g}(\mathbf{x }) \big ]-\mathbb {E}_{\mathbf{x }_1^{i}}g(\mathbf{x })\, \mathbb {E}_{\mathbf{x }_1^{i}}\tilde{g}(\mathbf{x }) \ge 0\,. \end{aligned}$$
(47)

The induction is ended by noting that with the hypothesis (46) the identity (47) can further be relaxed to

$$\begin{aligned} \mathbb {E}_{\mathbf{x }_1^{i}}[g(\mathbf{x })\, \tilde{g}(\mathbf{x })]-\mathbb {E}_{\mathbf{x }_1^{i}}g(\mathbf{x })\, \mathbb {E}_{\mathbf{x }_1^{i}}\tilde{g}(\mathbf{x }) \ge 0\,. \end{aligned}$$

This ends the induction argument and the proof. \(\square \)

On the Concentration and Existence of the Pressure

We consider Hamiltonian (1) with independent random couplings \(J_X\), \(X\subset \{1,\ldots , n\}\) and prove the following generic result used in (2). We then discuss a simple argument and condition that guarantees the existence of the thermodynamic limit using the first GKS inequality. We verify that these results apply to Example 1.

Proposition 13

(Concentration of the pressure) Let \(J_X\), \(X\subset \{1,\ldots , n\}\) be independent random variables such that \(\sum _{X\subset \{1,\ldots , n\}} \mathrm {Var}(J_X) \le C_P n\) for some numerical constant \(C_P>0\). Then we have \(\mathbb {E}[(P_n - p_n)^2] \le C_P/n\).

Proof

The proof is a simple application of the Efron-Stein inequality. Set \(\varvec{J}\equiv (J_X, X\subset \{1,\ldots ,n\})\). Let \(\varvec{J}^{(X)}\) be a vector such that \(\varvec{J}^{(X)}\) differs from \(\varvec{J}\) only at the Xth component which becomes \(J_X^\prime \) drawn independently from the same distribution as the one of \(J_X\) (note that the random variables \(J_X\) for different X do not necessarily have the same distribution). Efron Stein’s inequality tells us that

$$\begin{aligned} \mathbb {E} \big [ ( P_n - \mathbb {E}\,P_n )^2 \big ] \le \frac{1}{2} \sum _{X\subset \{1,\ldots ,n\}} \mathbb {E}_{\varvec{J}\setminus J_X} \mathbb {E}_{J_X}\mathbb {E}_{J'_X} \big [ ( P_n(\varvec{J}) - P_n(\varvec{J}^{(X)}) )^2 \big ] \,. \end{aligned}$$
(48)

An elementary interpolation gives

$$\begin{aligned} \big | P_n(\varvec{J}) - P_n(\varvec{J}^{(X)})\big |&= \frac{1}{n} \Big | \int _0^1 ds \frac{d}{ds} \ln \sum _{\varvec{\sigma } \in \{\pm 1 \}^n} \exp \big \{- \mathcal {H}_0(\varvec{\sigma },\varvec{J}^{(X)}) + s (J_X -J'_X) \sigma _X \big \} \Big | \\&= \frac{1}{n} \Big | \int _0^1 ds\, (J_X - J'_X) \langle \sigma _X \rangle _s \Big | \le \frac{1}{n} | J_X - J'_X | \,. \end{aligned}$$

Replacing in (48) (and recalling \(p_n\equiv \mathbb {E}\, P_n\)) gives

$$\begin{aligned} \mathbb {E}\big [(P_n - p_n)^2\big ] \le \frac{1}{2n^2} \sum _{X\subset \{1,\ldots ,n\}} \mathbb {E}_{J_X} \mathbb {E}_{J'_X} \big [ ( J_X - J'_X )^2 \big ] = \frac{1}{n^2}\sum _{X\subset \{1,\ldots ,n\}}\mathrm {Var}(J_X)\,. \end{aligned}$$

With the hypothesis on \(\mathrm {Var}(J_X)\) the proof is complete. \(\square \)

An easy and more or less standard superadditivity argument proves that the thermodynamic limit exists for the ferromagnetic model (1). We give the argument for completeness. For simplicity we consider that there exists a maximal size \(x_\mathrm{max}\) independent of n such that \(\vert X\vert \le x_\mathrm{max}\). We suppose furthermore that all \(J_X\) are independent with a distribution that depends only on the cardinalities \(\vert X\vert \) (in other words given a cardinality they are i.i.d.) and also

$$\begin{aligned} \frac{1}{n}\sum _{X\subset \{1, \ldots , n\}}\mathbb {E}\,J_X = \frac{1}{n}\sum _{\vert X\vert =1}^{x_\mathrm{max}}\left( {\begin{array}{c}n\\ \vert X\vert \end{array}}\right) m(\vert X\vert ) \le C \end{aligned}$$
(49)

where \(m({\vert X\vert }) \equiv \mathbb {E}\,J_X\) and C a positive constant independent of n.

Proposition 14

(Existence of the thermodynamic limit of the pressure) Let \(J_X, X \subset \{1,\ldots ,n\}\) be independent random variables with a probability distribution supported on \(\mathbb {R}_{\ge 0}\) depending only on \(\vert X\vert \). Moreover assume \(J_X=0\) for \(\vert X\vert > x_\mathrm{max}\) independent of n. Let (49) be satisfied. Then \(\lim _{n \rightarrow +\infty } p_n\) exists and is finite.

Proof

Fix non-zero integers \(n_1\), \(n_2\) both greater than \(x_\mathrm{max}\) and \(n \equiv n_1 + n_2\). Consider a set of realizations \(S\equiv \{J_X, X\subset \{1,\ldots ,n\}\}\). This set can be split in three disjoint sets \(S=S_1\cup S_2\cup S_{12}\) with \(S_1 \equiv \{J_X, X\subset \{1,\ldots , n_1\}\}\), \(S_2 \equiv \{J_X, X\subset \{n_1+1,\ldots , n\}\}\) and \(S_{12} \equiv \{J_X, X\cap \{1,\ldots , n_1\} \ne \emptyset , X\cap \{n_1+1,\ldots , n\} \ne \emptyset \}\). Let \(\ln {\mathcal {Z}}(S)/n\) the pressure corresponding to the Hamiltonian with couplings in S and \(\ln {\mathcal {Z}}(S_1)/n_1\) and \(\ln {\mathcal {Z}}(S_2)/n_2\) the pressures corresponding to the Hamiltonians with couplings from \(S_1\) and \(S_2\) only. One can show, using the first GKS inequality, thatFootnote 4

$$\begin{aligned} \ln {\mathcal {Z}}(S) \ge \ln {\mathcal {Z}}(S_1) + \ln {\mathcal {Z}}(S_2)\,. \end{aligned}$$

Then averaging over all coupling constants in S, using that they are independent with distributions depending only on the cardinality \(\vert X\vert \) and that all cardinalities are contained in S, \(S_1\) and \(S_2\), we obtain

$$\begin{aligned} \mathbb {E}_S\ln {\mathcal {Z}}(S) \ge \mathbb {E}_{S_1}\ln {\mathcal {Z}}(S_1) + \mathbb {E}_{S_2}\ln {\mathcal {Z}}(S_2) \end{aligned}$$

which is equivalent to \(np_n \ge n_1 p_{n_1} + n_2 p_{n_2}\) (for \(n_1\), \(n_2\) greater than \(x_\mathrm{max}\)). This means that the function \(n\mapsto np_n\) is a superadditive sequence and therefore by Fekete’s lemma the limit \(\lim _{n\rightarrow +\infty } p_n\) equals \(\sup _n p_n\). To show that \(\sup _n p_n\) is finite note that

$$\begin{aligned} p_n \le - \frac{1}{n} \,\mathbb {E}\,\min _{\varvec{\sigma }}\mathcal {H}(\varvec{\sigma }) + \ln 2 = \frac{1}{n} \sum _{X\subset \{1,\ldots ,n\}} \mathbb {E}\,J_X + \ln 2 \le C+ \ln 2 \end{aligned}$$

using \(J_X\ge 0\) and condition (49). This ends the proof. \(\square \)

Consider now Example 1 for n large and p fixed. We have \(J_X = 0\) for all subsets with cardinalities \(\vert X\vert \) different from 1 and p. For \(\vert X\vert =1\) the coupling constants \(J_X=H\) are deterministic so obviously \(\mathrm {Var}(J_X) =0\). For \(\vert X\vert =p\) the couplings \(J_X\) are independent Bernoulli variables taking value J with probability \(\gamma n \left( {\begin{array}{c}n\\ p\end{array}}\right) ^{-1}\) and 0 with complementary probability, so \(\mathrm {Var}(J_X) = J^2 \gamma n \left( {\begin{array}{c}n\\ p\end{array}}\right) ^{-1} \big ( 1 - \gamma n \left( {\begin{array}{c}n\\ p\end{array}}\right) ^{-1} \big )\). Thus

$$\begin{aligned} \sum _{X\subset \{1,\ldots ,n\}}\mathrm {Var}(J_X) = \left( {\begin{array}{c}n\\ p\end{array}}\right) J^2 \gamma n \left( {\begin{array}{c}n\\ p\end{array}}\right) ^{-1} \Big ( 1 - \gamma n \left( {\begin{array}{c}n\\ p\end{array}}\right) ^{-1} \Big ) < J^2\gamma n\,. \end{aligned}$$

Therefore Proposition 13 applies. Similarly the condition for the existence of the thermodynamic limit of the pressure is also met because the left hand side of (49) equals

$$\begin{aligned} \frac{1}{n}\sum _{X\subset \{1,\ldots ,n\}}\mathbb {E}\,J_X = H + J\gamma \,. \end{aligned}$$

The mixed p-spin models can be treated similarly.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barbier, J., Chan, C.L. & Macris, N. Concentration of Multi-overlaps for Random Dilute Ferromagnetic Spin Models. J Stat Phys 180, 534–557 (2020). https://doi.org/10.1007/s10955-019-02470-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-019-02470-6

Keywords

Navigation