Skip to main content
Log in

Nonlinear Instability of Inhomogeneous Steady States Solutions to the HMF Model

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In this work we prove the nonlinear instability of inhomogeneous steady states solutions to the Hamiltonian mean field (HMF) model. We first study the linear instability of this model under a simple criterion by adapting the techniques developed in Lin (Math Res Lett 8:521–534, 2001). In a second part, we extend to the inhomogeneous case some techniques developed in Grenier (Commun Pure Appl Math 53(9):1067–1091, 2000), Han-Kwan and Hauray (Commun Math Phys 334(2):1101–1152), Han-Kwan and Nguyen (J Stat Phys 162(6):1639–1653) and prove a nonlinear instability result under the same criterion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antoni, M., Ruffo, S.: Clustering and relaxation in Hamiltonian long-range dynamics. Phys. Rev. E 52, 2361 (1995)

    Article  ADS  Google Scholar 

  2. Antoniazzi, A., Fanelli, D., Ruffo, S., Yamaguchi, Y.Y.: Nonequilibrium tricritical point in a system with long-range interactions. Phys. Rev. Lett. 99, 040601 (2007)

    Article  ADS  Google Scholar 

  3. Barré, J., Yamaguchi, Y.Y.: Small traveling clusters in attractive and repulsive Hamiltonian mean-field models. Phys. Rev. E 79, 036208 (2009)

    Article  ADS  Google Scholar 

  4. Barré, J., Yamaguchi, Y.Y.: On the neighborhood of an inhomogeneous stable stationary solution of the Vlasov equation—case of an attractive cosine potential. J. Math. Phys. 56, 081502 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  5. Barré, J., Bouchet, F., Dauxois, T., Ruffo, S., Yamaguchi, Y.Y.: The Vlasov equation and the Hamiltonian mean-field model. Physica A 365, 177 (2006)

    Article  ADS  Google Scholar 

  6. Barré, J., Olivetti, A., Yamaguchi, Y.Y.: Dynamics of perturbations around inhomogeneous backgrounds in the HMF model. J. Stat. Mech. 08002 (2010)

  7. Barré, J., Olivetti, A., Yamaguchi, Y.Y.: Algebraic damping in the one-dimensional Vlasov equation. J. Phys. A Math. Gen. 44, 405502 (2011)

    Article  MathSciNet  Google Scholar 

  8. Caglioti, E., Rousset, F.: Quasi-stationary states for particle systems in the mean-field limit. J. Stat. Phys. 129(2), 241–263 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  9. Caglioti, E., Rousset, F.: Long time estimates in the mean field limit. Arch. Ration. Mech. Anal. 190(3), 517–547 (2008)

    Article  MathSciNet  Google Scholar 

  10. Campa, A., Chavanis, P.-H.: Inhomogeneous Tsallis distributions in the HMF model. J. Stat. Mech. 06001 (2010)

  11. Chavanis, P.-H.: Lynden-Bell and Tsallis distributions for the HMF model. Eur. Phys. J. B 53, 487 (2006)

    Article  ADS  Google Scholar 

  12. Chavanis, P.-H., Vatteville, J., Bouchet, F.: Dynamics and thermodynamics of a simple model similar to self-gravitating systems: the HMF model. Eur. Phys. J. B 46, 61 (2005)

    Article  ADS  Google Scholar 

  13. Faou, E., Rousset, F.: Landau damping in Sobolev spaces for the Vlasov-HMF model. Arch. Ration. Mech. Anal. 219(2), 887–902 (2016)

    Article  MathSciNet  Google Scholar 

  14. Grenier, E.: On the nonlinear instability of Euler and Prandtl equations. Commun. Pure Appl. Math. 53(9), 1067–1091 (2000)

    Article  MathSciNet  Google Scholar 

  15. Guo, Y., Lin, Z.: Unstable and stable galaxy models. Commun. Math. Phys. 279, 789–813 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  16. Guo, Y., Strauss, W.: Nonlinear instability of double-humped equilibria. Ann. Inst. H. Poincaré Anal. Non Linéaire 12, 339–352 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  17. Han-Kwan, D., Hauray, M.: Stability issues in the quasineutral limit of the one-dimensional Vlasov–Poisson equation. Commun. Math. Phys. 334(2), 1101–1152 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  18. Han-Kwan, D., Nguyen, T.: Instabilities in the mean field limit. J. Stat. Phys. 162(6), 1639–1653 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  19. Lin, Z.: Instability of periodic BGK waves. Math. Res. Lett. 8, 521–534 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  20. Lin, Z.: Nonlinear instability of periodic BGK waves for Vlasov–Poisson system. Commun. Pure Appl. Math. 58(4), 505–528 (2005)

    Article  MathSciNet  Google Scholar 

  21. Lemou, M., Méhats, F., Raphaël, P.: Structure of the linearized gravitational Vlasov–Poisson system close to a polytropic ground state. SIAM J. Math. Anal. 39(6), 1711–1739 (2008)

    Article  MathSciNet  Google Scholar 

  22. Lemou, M., Méhats, F., Raphaël, P.: Orbital stability of spherical galactic models. Invent. Math. 187, 145–194 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  23. Lemou, M., Luz, A.M., Méhats, F.: Nonlinear stability criteria for the HMF Model. Arch. Ration. Mech. Anal. 224(2), 353–380 (2017)

    Article  MathSciNet  Google Scholar 

  24. Ogawa, S.: Spectral and formal stability criteria of spatially inhomogeneous solutions to the Vlasov equation for the Hamiltonian mean-field model. Phys. Rev. E 87, 062107 (2013)

    Article  ADS  Google Scholar 

  25. Ogawa, S., Yamaguchi, Y.Y.: Precise determination of the nonequilibrium tricritical point based on Lynden-Bell theory in the Hamiltonian mean-field model. Phys. Rev. E 84, 061140 (2011)

    Article  ADS  Google Scholar 

  26. Pankavich, S., Allen, R.: Instability conditions for some periodic BGK waves in the Vlasov–Poisson system. Eur. Phys. J. D 68, 363 (2014)

    Article  ADS  Google Scholar 

  27. Shizuta, Y.: On the classical solutions of the Boltzmann equation. Commun. Pure Appl. Math. 36(6), 705–754 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  28. Staniscia, F., Chavanis, P.H., De Ninno, G.: Out-of-equilibrium phase transitions in the HMF model: a closer look. Phys. Rev. E. 83, 051111 (2011)

    Article  ADS  Google Scholar 

  29. Yamaguchi, Y.Y.: Construction of traveling clusters in the Hamiltonian mean-field model by nonequilibrium statistical mechanics and Bernstein-Greene-Kruskal waves. Phys. Rev. E 84, 016211 (2011)

    Article  ADS  Google Scholar 

  30. Yamaguchi, Y.Y., Barré, J., Bouchet, F., Dauxois, T., Ruffo, S.: Stability criteria of the Vlasov equation and quasi-stationary states of the HMF model. Physica A 337, 36 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank D. Han-Kwan for helpful discussions. A. M. Luz acknowledges support by the Brazilian National Council for Scientific and Technological Development (CNPq) under the program “Science without Borders” 249279/2013-4. M. Lemou and F. Méhats acknowledge supports from the ANR project MOONRISE ANR-14-CE23-0007-01, from the ENS Rennes project MUNIQ and from the INRIA project ANTIPODE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Lemou.

Additional information

Communicated by Eric A. Carlen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Existence of Unstable Steady States

Appendix: Existence of Unstable Steady States

In this section, we prove that the set of steady states satisfying the assumptions of Theorems 1.1 and 1.2 is not empty. More precisely, we prove the following

Lemma A.1

Let \(m>0\). There exist \(m>0\), \(e_*<m\) and there exists a nonincreasing function F, \({\mathcal {C}} ^{\infty }\) on \({\mathbb {R}}\), such that \(F(e)>0\) for \(e<e_*\), \(F(e)=0\) for \(e\ge e_*\) and \(|F'(e)|\le C|e_*-e|^{-\alpha }F(e)\) in the neighborhood of \(e_*\), for some \(\alpha \ge 1\), and such that the function \(f(\theta ,v)=F(\frac{v^2}{2}-m\cos \theta )\) is a steady state solution to the HMF model (1.1) and such that \(\kappa (m,F)>1\), where \(\kappa (m,F)\) is given by

$$\begin{aligned} \kappa (m,F)=\int ^{2 \pi }_{0}\!\!\int ^{+\infty }_{-\infty } \left| F'\!\left( e(\theta ,v)\right) \right| \left( \frac{\displaystyle \int _{{\mathcal {D}}_{e(\theta ,v)}}(\cos \theta -\cos \theta ')(e(\theta ,v)+m\cos \theta ')^{-1/2}d\theta '}{\displaystyle \int _{\mathcal D_{e(\theta ,v)}}(e(\theta ,v)+m\cos \theta ')^{-1/2}d\theta '} \right) ^2d\theta dv, \end{aligned}$$

with

$$\begin{aligned} e(\theta ,v)=\frac{v^2}{2}-m\cos \theta ,\qquad {\mathcal D_e}=\left\{ \theta '\in {\mathbb {T}}\,:\,\,m\cos \theta '>-e\right\} . \end{aligned}$$

Proof

Let \(m>0\) and F a nonincreasing \({\mathcal {C}} ^{\infty }\) function on \({\mathbb {R}}\) supported in \((-\infty ,m)\), which is not identically zero on \((-m,m)\). We first observe that \(f(\theta ,v)=F(\frac{v^2}{2}-m\cos \theta )\) is a steady state solution to the HMF model (1.1) if and only if m and F satisfy \(\gamma (m,F)=m\) with

$$\begin{aligned} \gamma (m,F):=\int _0^{2\pi }\int _{\mathbb {R}}F\left( \frac{v^2}{2}-m\cos \theta \right) \cos \theta d\theta dv>0. \end{aligned}$$

By using the linearity of \(\gamma \) in F we deduce that \(\frac{m}{\gamma (m,F)}F(\frac{v^2}{2}-m\cos \theta )\) is a steady state.

We proceed by a contradiction argument. Assume that

$$\begin{aligned} \kappa \left( m,\frac{m}{\gamma (m,F)}F\right) \le 1 \end{aligned}$$

for all \(m>0\) and all nonincreasing \({\mathcal {C}} ^{\infty }\) function F supported in \((-\infty ,m)\) such that, denoting by \((-\infty ,e_*]\) the support of F, we have \(|F'(e)|\le C|e_*-e|^{-\alpha }F(e)\) in the neighborhood of \(e_*\), for some \(\alpha \ge 1\). This is equivalent to

$$\begin{aligned} \kappa \left( m,F\right) \le \frac{\gamma (m,F)}{m}, \end{aligned}$$

or, after straightforward calculation and an integration by parts,

$$\begin{aligned} -\iint F'\left( e(\theta ,v)\right) g_m(e(\theta ,v))d\theta dv\le 0 \end{aligned}$$
(A.1)

with

$$\begin{aligned} g_m(e)=(\Pi _m \cos ^2\theta )(e)-\left( (\Pi _m\cos \theta )(e)\right) ^2-(\Pi _m \sin ^2\theta )(e) \end{aligned}$$

and for all function \(h(\theta )\),

$$\begin{aligned} (\Pi _m h)(e)=\frac{\displaystyle \int _{{\mathcal {D}}_e}(e+m\cos \theta )^{-1/2}h(\theta )d\theta }{\displaystyle \int _{{\mathcal {D}}_e}(e+m\cos \theta )^{-1/2}d\theta }. \end{aligned}$$

Now, we choose the functions F as follows. We first pick a nonincreasing \({\mathcal {C}} ^{\infty }\) function \(\Psi \) on \({\mathbb {R}}\) with support \((\infty ,e_\sharp ]\subset (-\infty ,m)\), then we set \(e_*=\frac{e_\sharp +m}{2}\) and define

$$\begin{aligned} F_\varepsilon (e)=\Psi (e)+\varepsilon \exp \left( -(e_*-e)^{-1}\right) , \quad \text{ for } e<e_*, \end{aligned}$$

the parameter \(\varepsilon >0\) being arbitrary. Since \(F_\varepsilon \) satisfies the assumptions, it satisfies (A.1). Then, letting \(\varepsilon \rightarrow 0\), we get

$$\begin{aligned} -\iint \Psi '\left( e(\theta ,v)\right) g_m(e(\theta ,v))d\theta dv\le 0. \end{aligned}$$

The function \(\Psi \) being arbitrary, this is equivalent to

$$\begin{aligned} g_m(e)\le 0,\qquad \forall m>0,\quad \forall e\in (-m,m), \end{aligned}$$

or,

$$\begin{aligned} g_1(e)\le 0,\qquad \forall e\in (-1,1). \end{aligned}$$
(A.2)

Let us now prove that the function \(g_1(e)\) is in fact positive in the neighborhood of \(e=1\), which contradicts (A.2).

Indeed, we introduce

$$\begin{aligned} \alpha (e)=\int _{{\mathcal {D}}_e}(e+\cos \theta )^{-1/2}d\theta ,\qquad \beta (e)=\int _{{\mathcal {D}}_e}(e+\cos \theta )^{-1/2}\sin ^2\theta d\theta . \end{aligned}$$

We have

$$\begin{aligned}\alpha (e) g_1(e)&=\alpha (e)-2\beta (e)-\frac{1}{\alpha (e)}\left( \int _{{\mathcal {D}}_e}(e+\cos \theta )^{1/2}d\theta -e\alpha (e)\right) ^2\\&=(1-e^2)\alpha (e)-2\beta (e)+2e\int _{\mathcal {D}_e}(e+\cos \theta )^{1/2}d\theta \\&\quad -\frac{1}{\alpha (e)}\left( \int _{\mathcal {D}_e}(e+\cos \theta )^{1/2}d\theta \right) ^2. \end{aligned}$$

From [23], we have

$$\begin{aligned} \alpha (e)\sim -\sqrt{2}\log (1-e)\quad \text{ as } e\rightarrow 1^-, \end{aligned}$$

and direct calculations yield

$$\begin{aligned} \int _0^{2\pi }(1+\cos \theta )^{1/2}d\theta =4\sqrt{2},\qquad \beta (1)=\frac{8\sqrt{2}}{3}. \end{aligned}$$

This means that

$$\begin{aligned}&\alpha (e)g_1(e)\rightarrow \frac{8\sqrt{2}}{3}>0 \quad \text{ as } e\rightarrow 1^-, \\&g_1(e)\sim \frac{8\sqrt{2}}{\alpha (e)}\text{ as } e\rightarrow 1^-. \end{aligned}$$

This proves the claim. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lemou, M., Luz, A.M. & Méhats, F. Nonlinear Instability of Inhomogeneous Steady States Solutions to the HMF Model. J Stat Phys 178, 645–665 (2020). https://doi.org/10.1007/s10955-019-02448-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-019-02448-4

Navigation