Skip to main content
Log in

Statistics of TASEP with Three Merging Characteristics

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In this paper we consider the totally asymmetric simple exclusion process, with non-random initial condition having three regions of constant densities of particles. From left to right, the densities of the three regions are increasing. Consequently, there are three characteristics which meet, i.e. two shocks merge. We study the particle fluctuations at this merging point and show that they are given by a product of three (properly scaled) GOE Tracy–Widom distribution functions. We work directly in TASEP without relying on the connection to last passage percolation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. We will not write explicitly the integer valued in the following, since they are irrelevant for the asymptotic question we are going to study.

References

  1. Andjel, E.D., Vares, M.E.: Hydrodynamic equations for attractive particle systems on \({\mathbb{Z}}\). J. Stat. Phys. 47, 265–288 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  2. Baik, J., Ferrari, P.L., Péché, S.: Convergence of the two-point function of the stationary TASEP. In: Baik, J., Ferrari, P.L., Péché, S. (eds.) Singular Phenomena and Scaling in Mathematical Models, pp. 91–110. Springer, New York (2014)

    Chapter  Google Scholar 

  3. Basu, R., Sidoravicius, V., Sly, A.: Last passage percolation with a defect line and the solution of the slow bond problem. arXiv:1408.3464 (2014) (preprint)

  4. Belitsky, V., Schütz, G.M.: Microscopic structure of shocks and antishocks in the ASEP conditioned on low current. J. Stat. Phys. 152, 93–111 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  5. Corwin, I., Ferrari, P.L., Péché, S.: Universality of slow decorrelation in KPZ models. Ann. Inst. H. Poincaré Probab. Statist. 48, 134–150 (2012)

    Article  ADS  Google Scholar 

  6. Derrida, B., Janowsky, S.A., Lebowitz, J.L., Speer, E.R.: Exact solution of the totally asymmetric simple exclusion process: shock profiles. J. Stat. Phys. 73, 813–842 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  7. Ferrari, P.A.: The simple exclusion process as seen from a tagged particle. Ann. Probab. 14, 1277–1290 (1986)

    Article  MathSciNet  Google Scholar 

  8. Ferrari, P.A.: Shock fluctuations in asymmetric simple exclusion. Probab. Theory Relat. Fields 91, 81–101 (1992)

    Article  MathSciNet  Google Scholar 

  9. Ferrari, P.A., Fontes, L.: Shock fluctuations in the asymmetric simple exclusion process. Probab. Theory Relat. Fields 99, 305–319 (1994)

    Article  MathSciNet  Google Scholar 

  10. Ferrari, P.A., Kipnis, C., Saada, E.: Microscopic structure of travelling waves in the asymmetric simple exclusion process. Ann. Probab. 19, 226–244 (1991)

    Article  MathSciNet  Google Scholar 

  11. Ferrari, P.L.: Slow decorrelations in KPZ growth. J. Stat. Mech. (2008). https://doi.org/10.1088/1742-5468/2008/07/P07022

  12. Ferrari, P.L.: Finite gue distribution with cut-off at a shock. J. Stat. Phys. 172, 505–521 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  13. Ferrari, P.L., Nejjar, P.: Anomalous shock fluctuations in TASEP and last passage percolation models. Probab. Theory Relat. Fields 161, 61–109 (2015)

    Article  MathSciNet  Google Scholar 

  14. Ferrari, P.L., Nejjar, P.: Fluctuations of the competition interface in presence of shocks. ALEA Lat. Am. J. Probab. Math. Stat. 14, 299–325 (2017)

    Article  MathSciNet  Google Scholar 

  15. Ferrari, P.L., Occelli, A.: Universality of the GOE Tracy-Widom distribution for TASEP with arbitrary particle density. Eletron. J. Probab. 23(51), 1–24 (2018)

    MathSciNet  MATH  Google Scholar 

  16. Ferrari, P.L., Ghosal, P., Nejjar, P.: Limit law of a second class particle in TASEP with non-random initial condition. Ann. Inst. Henri Poincaré Probab. Statist. 55, 1203–1225 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  17. Gärtner, J., Presutti, E.: Shock fluctuations in a particle system. Ann. Inst. H. Poincaré (A) 53, 1–14 (1990)

    MathSciNet  MATH  Google Scholar 

  18. Harris, T.: Additive set-valued markov processes and pharical methods. Ann. Probab. 6, 355–378 (1878)

    Article  Google Scholar 

  19. Johansson, K.: Shape fluctuations and random matrices. Commun. Math. Phys. 209, 437–476 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  20. Johansson, K.: Transversal fluctuations for increasing subsequences on the plane. Probab. Theory Relat. Fields 116, 445–456 (2000)

    Article  MathSciNet  Google Scholar 

  21. Kardar, M., Parisi, G., Zhang, Y.Z.: Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56, 889–892 (1986)

    Article  ADS  Google Scholar 

  22. Ledoux, M., Rider, B.: Small deviations for beta ensembles. Electron. J. Probab. 15, 1319–1343 (2010)

    Article  MathSciNet  Google Scholar 

  23. Liggett, T.M.: Coupling the simple exclusion process. Ann. Probab. 4, 339–356 (1976)

    Article  MathSciNet  Google Scholar 

  24. Liggett, T.M.: Interacting Particle Systems. Springer, Berlin (1985)

    Book  Google Scholar 

  25. Liggett, T.M.: Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. Springer, Berlin (1999)

    Book  Google Scholar 

  26. Nejjar, P.: Transition to shocks in TASEP and decoupling of last passage times. ALEA Lat. Am. J. Probab. Math. Stat. 15, 1311–1334 (2018)

    Article  MathSciNet  Google Scholar 

  27. Nejjar, P.: GUE \(\times \) GUE limit law at hard shocks in ASEP. arXiv:1906.07711 (2019) (preprint)

  28. Nejjar, P.: KPZ statistics of second class particles in ASEP via mixing. arXiv:1911.09426 (2019) (preprint)

  29. Seppalainen, Timo: Coupling the totally asymmetric simple exclusion process with a moving interface. Markov Process. Relat. Fields 4(4), 593–628 (1998)

    MathSciNet  MATH  Google Scholar 

  30. Tracy, C.A., Widom, H.: On orthogonal and symplectic matrix ensembles. Commun. Math. Phys. 177, 727–754 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  31. Widom, H.: On convergence of moments for random young tableaux and a random growth model. Int. Math. Res. Notices 9, 455–464 (2002)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the Deutsche Forschungsgemeinschaft (German Research Foundation) by the CRC 1060 (Projektnummer 211504053) and Germany’s Excellence Strategy - GZ 2047/1, Projekt ID 390685813.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrik L. Ferrari.

Additional information

Communicated by Ivan Corwin.

We dedicate this paper to Joel Lebowitz on the occasion of his 90th birthday.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Some Bounds

Appendix: Some Bounds

Lemma A.1

Let \(\nu \in (0,1)\). There exists a \(t_0\in (0,\infty )\) such that for all \(t\ge t_0\),

$$\begin{aligned} \begin{aligned}&{\mathbb {P}}(x^{\mathrm{step}}_{\nu t}(t)\ge (1-2\sqrt{\nu })t-s t^{1/3})\le C_1\, e^{-c_1 (-s)^{3/2}},\quad s\le 0,\\&{\mathbb {P}}(x^{\mathrm{step}}_{\nu t}(t)\le (1-2\sqrt{\nu })t -s t^{1/3})\le C_2 \,e^{-c_2 s},\quad s\ge 0, \end{aligned} \end{aligned}$$
(A.1)

where the constants \(C_i,c_i\) are positive and independent of s. Further, for any given \(\varepsilon >0\), the constants in the bounds for step initial conditions can be chosen independent of \(\nu \in [\varepsilon ,1-\varepsilon ]\).

The first estimate in (A.1) was obtained in [2] in terms of TASEP height function. The idea is to bound the Fredholm determinant which gives the distribution function of \(x^{\mathrm{step}}_{t/4}(t)\) by the exponential of the trace of the kernel, see Sect. 4 of [2]. The method was used before by Widom in [31]. The other two estimates in (A.1) follow directly from the exponential estimates on the correlation kernel for step initial condition. Although we do not need it here, let us mention that the estimates can be improved to optimal decay power [22].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrari, P.L., Nejjar, P. Statistics of TASEP with Three Merging Characteristics. J Stat Phys 180, 398–413 (2020). https://doi.org/10.1007/s10955-019-02447-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-019-02447-5

Keywords

Navigation