Skip to main content
Log in

The Linearized Vlasov and Vlasov–Fokker–Planck Equations in a Uniform Magnetic Field

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the linearized Vlasov equations and the linearized Vlasov–Fokker–Planck equations in the weakly collisional limit in a uniform magnetic field. In both cases, we consider periodic confinement and Maxwellian (or close to Maxwellian) backgrounds. In the collisionless case, for modes transverse to the magnetic field, we provide a precise decomposition into a countably infinite family of standing waves for each spatial mode. These are known as Bernstein modes in the physics literature, though the decomposition is not an obvious consequence of any existing arguments that we are aware of. We show that other modes undergo Landau damping. In the presence of collisions with collision frequency \(\nu \ll 1\), we show that these modes undergo uniform-in-\(\nu \) Landau damping and enhanced collisional relaxation at the time-scale \(O(\nu ^{-1/3})\). The modes transverse to the field are uniformly stable and exponentially thermalize on the time-scale \(O(\nu ^{-1})\). Most of the results are proved using Laplace transform analysis of the associated Volterra equations, whereas a simple case of Yan Guo’s energy method for hypocoercivity of collision operators is applied for stability in the collisional case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. The quantity in [13, Eq. (22)] is never an entire function. Regardless of the regularity or velocity localization of the initial condition, there are generically poles at every cyclotron harmonic. See Sect. 2.1.1 for more details.

  2. According to Bernstein [13] this was first observed by Newcomb.

References

  1. Beck, M., Wayne, C.E.: Metastability and rapid convergence to quasi-stationary bar states for the two-dimensional Navier–Stokes equations. Proc. R. Soc. Edinb.: Sect. A Math. 143(05), 905–927 (2013)

    MathSciNet  MATH  Google Scholar 

  2. Bedrossian, J.: Nonlinear echoes and Landau damping with insufficient regularity. arXiv:1605.06841 (2016)

  3. Bedrossian, J.: Suppression of plasma echoes and landau damping in Sobolev spaces by weak collisions in a Vlasov–Fokker–Planck equation. Ann. PDE 3(2), 19 (2017)

    MathSciNet  MATH  Google Scholar 

  4. Bedrossian, J., Zelati, M Coti: Enhanced dissipation, hypoellipticity, and anomalous small noise inviscid limits in shear flows. Arch. Ration. Mech. Anal. 224(3), 1161–1204 (2017)

    MathSciNet  MATH  Google Scholar 

  5. Bedrossian, J., Germain, P., Masmoudi, N.: Dynamics near the subcritical transition of the 3D Couette flow I: below threshold. arXiv:1506.03720. To appear in Mem. AMS (2015)

  6. Bedrossian, J., Germain, P., Masmoudi, N.: Dynamics near the subcritical transition of the 3D Couette flow II: above threshold. arXiv:1506.03721. To appear in Mem. AMS (2015)

  7. Bedrossian, J., Germain, P., Masmoudi, N.: On the stability threshold for the 3D Couette flow in Sobolev regularity. Ann. Math. 157(1), 541–608 (2017)

    MathSciNet  MATH  Google Scholar 

  8. Bedrossian, J., Masmoudi, N., Mouhot, C.: Landau damping: paraproducts and Gevrey regularity. Ann. PDE 2(1), 1–71 (2016)

    MathSciNet  MATH  Google Scholar 

  9. Bedrossian, J., Masmoudi, N., Mouhot, C.: Landau damping in finite regularity for unconfined systems with screened interactions. Commun. Pure Appl. Math. 71(3), 537–576 (2018)

    MathSciNet  MATH  Google Scholar 

  10. Bedrossian, J., Masmoudi, N., Vicol, V.: Enhanced dissipation and inviscid damping in the inviscid limit of the Navier–Stokes equations near the 2D Couette flow. Arch. Ration. Mech. Anal. 216(3), 1087–1159 (2016)

    MATH  Google Scholar 

  11. Bedrossian, J., Vicol, V., Wang, F.: The Sobolev stability threshold for 2D shear flows near Couette. J. Nonlinear Sci. 28, 2051–2075 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  12. Bernoff, A., Lingevitch, J.: Rapid relaxation of an axisymmetric vortex. Phys. Fluids 6, 3717–3723 (1994)

    ADS  MATH  Google Scholar 

  13. Bernstein, I.B.: Waves in a plasma in a magnetic field. Phys. Rev. 109(1), 10 (1958)

    ADS  MathSciNet  MATH  Google Scholar 

  14. Caglioti, E., Maffei, C.: Time asymptotics for solutions of Vlasov–Poisson equation in a circle. J. Stat. Phys. 92(1/2), 301–323 (1998)

    MathSciNet  MATH  Google Scholar 

  15. Callen, J.: Coulomb collision effects on linear Landau damping. Phys. Plasmas 21(5), 052106 (2014)

    ADS  Google Scholar 

  16. Constantin, P., Kiselev, A., Ryzhik, L., Zlatoš, A.: Diffusion and mixing in fluid flow. Ann. Math. 2(168), 643–674 (2008)

    MathSciNet  MATH  Google Scholar 

  17. Coti Zelati, M., Elgindi, T., Widmayer, K.: Enhanced dissipation in the Navier–Stokes equations near the Poiseuille flow. arXiv preprint arXiv:1901.01571 (2019)

  18. Coti Zelati, M., Zillinger, C.: On degenerate circular and shear flows: the point vortex and power law circular flows. Comm. Part. Diff. Eqns. 44(2), 110–115 (2019)

    MathSciNet  MATH  Google Scholar 

  19. Degond, P.: Spectral theory of the linearized Vlasov–Poisson equation. Trans. Am. Math. Soc. 294(2), 435–453 (1986)

    MathSciNet  MATH  Google Scholar 

  20. Gallagher, I., Gallay, T., Nier, F.: Spectral asymptotics for large skew-symmetric perturbations of the harmonic oscillator. Int. Math. Res. Not. 12, 2147–2199 (2009)

    MathSciNet  MATH  Google Scholar 

  21. Gallay, T.: Enhanced dissipation and axisymmetrization of two-dimensional viscous vortices. Arch. Ration. Mech. Anal. 230(3), 939–975 (2018)

    MathSciNet  MATH  Google Scholar 

  22. Gallay, T., Wayne, E.: Invariant manifolds and the long-time asymptotics of the Navier–Stokes and vorticity equations on \({\mathbb{R}}^2\). Arch. Ration. Mech. Anal. 163, 209–258 (2002)

    MathSciNet  MATH  Google Scholar 

  23. Glassey, R., Schaeffer, J.: Time decay for solutions to the linearized Vlasov equation. Transp. Theory Stat. Phys. 23(4), 411–453 (1994)

    ADS  MathSciNet  MATH  Google Scholar 

  24. Glassey, R., Schaeffer, J.: On time decay rates in Landau damping. Commun. Partial Differ. Equ. 20(3–4), 647–676 (1995)

    MathSciNet  MATH  Google Scholar 

  25. Goldston, R.J., Rutherford, P.H.: Introduction to Plasma Physics. CRC Press, Boca Raton (1995)

    MATH  Google Scholar 

  26. Guo, Y.: The Landau equation in a periodic box. Commun. Math. Phys. 231(3), 391–434 (2002)

    ADS  MathSciNet  MATH  Google Scholar 

  27. Guo, Y.: The Vlasov–Maxwell–Boltzmann system near Maxwellians. Invent. Math. 153(3), 593–630 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

  28. Guo, Y.: Boltzmann diffusive limit beyond the navier-stokes approximation. Commun. Pure Appl. Math. 59(5), 626–687 (2006)

    MathSciNet  MATH  Google Scholar 

  29. Guo, Y.: The Vlasov–Poisson–Landau system in a periodic box. J. Am. Math. Soc. 25(3), 759–812 (2012)

    MathSciNet  MATH  Google Scholar 

  30. Hwang, H.J., Velaźquez, J.J.L.: On the existence of exponentially decreasing solutions of the nonlinear Landau damping problem. Indiana Univ. Math. J. 58, 2623–2660 (2009)

    MathSciNet  MATH  Google Scholar 

  31. Ibrahim, S., Maekawa, Y., Masmoudi, N.: On pseudospectral bound for non-selfadjoint operators and its application to stability of Kolmogorov flows. arXiv preprint arXiv:1710.05132 (2017)

  32. Johnston, G.L.: Dominant effects of coulomb collisions on maintenance of Landau damping. Phys. Fluids 14(12), 2719–2726 (1971)

    ADS  Google Scholar 

  33. Kelvin, L.: Stability of fluid motion-rectilinear motion of viscous fluid between two parallel plates. Philos. Mag. 24, 188 (1887)

    Google Scholar 

  34. Landau, L.: On the vibration of the electronic plasma. J. Phys. USSR 10, 25 (1946)

    MathSciNet  MATH  Google Scholar 

  35. Latini, M., Bernoff, A.: Transient anomalous diffusion in Poiseuille flow. J. Fluid Mech. 441, 399–411 (2001)

    ADS  MATH  Google Scholar 

  36. Lenard, A., Bernstein, I.B.: Plasma oscillations with diffusion in velocity space. Phys. Rev. 112(5), 1456 (1958)

    ADS  MathSciNet  MATH  Google Scholar 

  37. Li, T., Wei, D., Zhang, Z.: Pseudospectral and spectral bounds for the Oseen vortices operator. arXiv preprint arXiv:1701.06269 (2017)

  38. Malmberg, J., Wharton, C.: Collisionless damping of electrostatic plasma waves. Phys. Rev. Lett. 13(6), 184–186 (1964)

    ADS  Google Scholar 

  39. Malmberg, J., Wharton, C., Gould, C., O’Neil, T.: Plasma wave echo. Phys. Rev. Lett. 20(3), 95–97 (1968)

    ADS  Google Scholar 

  40. Mouhot, C., Villani, C.: On Landau damping. Acta Math. 207, 29–201 (2011)

    MathSciNet  MATH  Google Scholar 

  41. Ng, C., Bhattacharjee, A., Skiff, F.: Kinetic eigenmodes and discrete spectrum of plasma oscillations in a weakly collisional plasma. Phys. Rev. Lett. 83(10), 1974 (1999)

    ADS  Google Scholar 

  42. Ng, C., Bhattacharjee, A., Skiff, F.: Weakly collisional landau damping and three-dimensional Bernstein–Greene–Kruskal modes: new results on old problems. Phys. Plasmas 13(5), 055903 (2006)

    ADS  Google Scholar 

  43. O’Neil, T.M.: Effect of coulomb collisions and microturbulence on the plasma wave echo. Phys. Fluids 11(11), 2420–2425 (1968)

    ADS  MATH  Google Scholar 

  44. Penrose, O.: Electrostatic instability of a uniform non-Maxwellian plasma. Phys. Fluids 3, 258–265 (1960)

    ADS  MATH  Google Scholar 

  45. Rhines, P., Young, W.: How rapidly is a passive scalar mixed within closed streamlines? J. Fluid Mech. 133, 133–145 (1983)

    ADS  MATH  Google Scholar 

  46. Ryutov, D.: Landau damping: half a century with the great discovery. Plasma Phys. Control. Fusion 41(3A), A1 (1999)

    ADS  Google Scholar 

  47. Short, R., Simon, A.: Damping of perturbations in weakly collisional plasmas. Phys. Plasmas 9(8), 3245–3253 (2002)

    ADS  Google Scholar 

  48. Stix, T.: Waves in Plasmas. Springer, Berlin (1992)

    Google Scholar 

  49. Su, C., Oberman, C.: Collisional damping of a plasma echo. Phys. Rev. Lett. 20(9), 427 (1968)

    ADS  Google Scholar 

  50. Swanson, D.G.: Plasma Waves. Elsevier, Amsterdam (2012)

    Google Scholar 

  51. Tristani, I.: Landau damping for the linearized vlasov poisson equation in a weakly collisional regime. J. Stat. Phys. 169(1), 107–125 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  52. Villani, C.: Hypocoercivity. American Mathematical Society, Providence (2009)

    MATH  Google Scholar 

  53. Vukadinovic, J., Dedits, E., Poje, A.C., Schäfer, T.: Averaging and spectral properties for the 2D advection-diffusion equation in the semi-classical limit for vanishing diffusivity. Phys. D 310, 1–18 (2015)

    MathSciNet  MATH  Google Scholar 

  54. Wei, D., Zhang, Z.: Transition threshold for the 3D Couette flow in Sobolev space. arXiv preprint arXiv:1803.01359 (2018)

  55. Wei, D., Zhang, Z., Zhao, W.: Linear inviscid damping and enhanced dissipation for the kolmogorov flow. arXiv preprint arXiv:1711.01822 (2017)

  56. Zillinger, C.: Linear inviscid damping for monotone shear flows. Trans. Am. Math. Soc. 369(12), 8799–8855 (2017)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Jacob Bedrossian was partially supported by NSF CAREER Grants DMS-1552826 and DMS-1413177. Additionally, the research was supported in part by NSF RNMS #1107444 (Ki-Net).

Appendix: Identities and Estimates for the Generalized Bessel Functions

Appendix: Identities and Estimates for the Generalized Bessel Functions

Recall the generalized Bessel functions

$$\begin{aligned} I_\alpha (x)=i^{-\alpha }J_{\alpha }(ix)=\sum _{m=0}^\infty \frac{1}{m!\Gamma (m+\alpha +1)}\left( \frac{x}{2}\right) ^{2m+\alpha } \end{aligned}$$

where \(\alpha \in {\mathbb {R}}\) and \(x\in {\mathbb {C}}\). Theses functions enjoy the following identities:

$$\begin{aligned}&\exp {(z\cos \theta )}=I_0(z)+2\sum _1^\infty I_n(z)\cos n\theta \end{aligned}$$
(A.1)
$$\begin{aligned}&I_{n-1}(a)-I_{n+1}(a)=\frac{2n}{a}I_n(a) \end{aligned}$$
(A.2)

which is used crucially in the proof. From (A.1), we have

$$\begin{aligned} \text {e}^a=\sum _{n=-\infty }^{\infty }I_n(a)=I_0(a)+2\sum _1^\infty I_n(a). \end{aligned}$$
(A.3)

Note that since each \(I_{n}(a)\) is positive, it is straightforward to get

$$\begin{aligned} I_{n}(a) \le \text {e}^a \end{aligned}$$

for any \(n\in {\mathbb {N}}\) and \(a\in {\mathbb {R}}\). By summing up (A.2) in n, we get

$$\begin{aligned} I_{0}(a)+I_{1}(a)=\sum _{n=1}^\infty (I_{n-1}(a)-I_{n+1}(a))=\sum _{n=1}^\infty \frac{2n}{a}I_{n}(a). \end{aligned}$$
(A.4)

For \(I_{0}(a)\) and \(I_{1}(a)\), we have the following bounds.

Lemma A.1

The following inequalities hold

$$\begin{aligned}&I_{0}(a) \lesssim \frac{1}{\sqrt{a}}\text {e}^{a}; \nonumber \\&I_{1}(a) \lesssim \frac{1}{\sqrt{a}}\text {e}^{a}. \end{aligned}$$
(A.5)

Proof

By the definition of \(I_{n}(a)\), we obtain

$$\begin{aligned} I_{0}(a) = \sum _{m=0}^\infty \frac{1}{m!^2}\left( \frac{a}{2}\right) ^{2m} \le \text {e}^{a/2}\sup _{m\ge 0} \frac{1}{m!}\left( \frac{a}{2}\right) ^{m}. \end{aligned}$$

Denote \(m_0 = [a/2]\) and observe that the sequence \(\frac{1}{m!}\left( \frac{a}{2}\right) ^{m}\) is increasing for \(m \le m_0\) and decreasing for \(m \ge m_0\) and hence,

$$\begin{aligned} \sup _m \frac{1}{m!}\left( \frac{a}{2}\right) ^{m}&= \frac{1}{m_0!}\left( \frac{a}{2}\right) ^{m_0} \lesssim \frac{1}{2\pi \sqrt{m_0}}\left( \frac{e}{m_0}\right) ^{m_0}\left( \frac{a}{2}\right) ^{m_0} \\&\lesssim \frac{1}{2\pi \sqrt{m_0}}\text {e}^{a/2}\left( \frac{a}{2m_0}\right) ^{m_0} \lesssim \frac{1}{2\pi \sqrt{m_0}}\text {e}^{a/2}. \end{aligned}$$

Therefore, we may bound \(I_{0}(a)\) as

$$\begin{aligned} I_{0}(a) \lesssim \frac{1}{2\pi \sqrt{m_0}}\text {e}^{a} \end{aligned}$$

from where (A.5) follows. Similar argument gives

$$\begin{aligned} I_{1}(a) \lesssim \frac{1}{\sqrt{a}}\text {e}^{a} \end{aligned}$$

completing the proof of the lemma. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bedrossian, J., Wang, F. The Linearized Vlasov and Vlasov–Fokker–Planck Equations in a Uniform Magnetic Field. J Stat Phys 178, 552–594 (2020). https://doi.org/10.1007/s10955-019-02441-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-019-02441-x

Keywords

Navigation