Skip to main content
Log in

Static Approach to Renormalization Group Analysis of Stochastic Models with Spatially Quenched Noise

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A new “static” renormalization group approach to stochastic models of fluctuating surfaces with spatially quenched noise is proposed in which only time-independent quantities are involved. As examples, quenched versions of the Kardar–Parisi–Zhang model and its Pavlik’s modification, the Hwa–Kardar model of self-organized criticality, and Pastor–Satorras–Rothman model of landscape erosion are studied. It is shown that the logarithmic dimension in the quenched models is shifted by two units upwards in comparison to their counterparts with white in-time noise. Possible scaling regimes associated with fixed points of the renormalization group equations are found and the critical exponents are derived to the leading order of the corresponding \(\varepsilon \) expansions. Some exact values and relations for these exponents are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In principle, the stochastic equation may have time-dependent solutions. In particular, if the function h(x) is chosen in the form \(h(x)=h_0 t + h_1(\mathbf{x})\) and the nonlinearity depends only on the gradients of the field, like for the KPZ model, the left hand side of Eq. (4) becomes independent on t and can be equated to the right hand side. However, here we are interested only in a stationary state of the system and work within diagrammatic perturbation theory; then the solution is unique and time-independent. We thank one of the referees for bringing our attention to this point.

  2. The necessary steps of renormalization group analysis are thoroughly discussed and justified in several works, see, e.g. [65] or [60], Ch. 5 and 6. For the sake of brevity, here we restrict ourselves to only the necessary information.

  3. Another possibility would be to assume that all the couplings \(g_n\) are of the same order. Then the expansion in the full set of \(g_n\)’s would correspond to the expansion in the interaction n(h) or, equivalently, in V(h). In a one-coupling model such two possibilities are equivalent; in the multi-coupling models the loop expansion is richer in the sense that it performs a partial (and in our case infinite) resummation of the plain expansion in the interaction.

    In this connection, the scalar electrodynamics should be mentioned: there, the charge e of the scalar particle and the constant g of the scalar quartic interaction are related as \(g \propto e^2\). In the \(\varepsilon = 4-d\) expansion they are of the same order: \(g \propto e^2 \simeq \varepsilon \); see, e.g., [111,112,113] and the references.

References

  1. Krug, J., Spohn, H.: Kinetic roughening of growing surfaces. In: Godreche, C. (ed.) Solids Far from Equilibrium, pp. 479–582. Cambridge University Press, Cambridge (1990)

    Google Scholar 

  2. Halpin-Healy, T., Zhang, Y.-C.: Kinetic roughening phenomena, stochastic growth, directed polymers and all that. Aspects of multidisciplinary statistical mechanics. Phys. Rep. 254, 215–414 (1995)

    ADS  Google Scholar 

  3. Barabási, A.-L., Stanley, H.E.: Fractal Concepts in Surface Growth. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  4. Krug, J.: Origins of scale invariance in growth processes. Adv. Phys. 46, 139–282 (1997)

    ADS  Google Scholar 

  5. Lässig, M.: On growth, disorder, and field theory. J. Phys. 10, 9905–9950 (1998)

    Google Scholar 

  6. Eden, M.: A two-dimensional growth process. Fourth Berkeley Symposium on Mathematical Statistics and Probability, vol. 4, pp. 223–239. Cambridge University Press, Cambridge (1961)

  7. Kim, J.M., Kosterlitz, J.M., Ala-Nissila, T.: Surface growth and crossover behaviour in a restricted solid-on-solid model. J. Phys. A 24, 5569–5586 (1991)

    ADS  Google Scholar 

  8. Penrose, M.D.: Growth and roughness of the interface for ballistic deposition. J. Stat. Phys. 131, 247–268 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  9. Pastor-Satorras, R., Rothman, D.H.: Stochastic equation for the erosion of inclined topography. Phys. Rev. Lett. 80, 4349–4352 (1998)

    ADS  Google Scholar 

  10. Pastor-Satorras, R., Rothman, D.H.: Scaling of a slope: the erosion of tilted landscapes. J. Stat. Phys. 93, 477–500 (1998)

    ADS  MATH  Google Scholar 

  11. Kirkby, M.J.: Hillslope process-response models based on the continuity equation. In: Kirkby, M.J. (ed.) Slopes: Form and Process, pp. 15–29. Institute of British Geographers, London (1971)

    Google Scholar 

  12. Scheidegger, A.E.: Theoretical Geomorphology, 3rd edn. Springer, New York (1991)

    Google Scholar 

  13. Rodriguez-Iturbe, I., Rinaldo, A.: Fractal River Basins: Chance and Self-organization. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  14. Howard, A.D., Kerby, G.: Channel changes in badlands. Geol. Soc. Am. Bull. 94, 739–752 (1983)

    ADS  Google Scholar 

  15. Kirchner, J.W.: Statistical inevitability of Horton’s laws and the apparent randomness of stream channel networks. Geology 21, 591–594 (1993)

    ADS  Google Scholar 

  16. Willgoose, G., Bras, R.L., Rodriguez-Iturbe, I.: A coupled channel network growth and hillslope evolution model: 1. Theory. Water Resour. Res. 27(7), 1671–1684 (1991)

    ADS  Google Scholar 

  17. Loewenherz, D.S.: Stability and the initiation of channelized surface drainage: a reassessment of the short wavelength limit. J. Geophys. Res. 96, 8453–8464 (1991)

    ADS  Google Scholar 

  18. Howard, A.D.: A detachment-limited model of drainage basin evolution. Water Resour. Res. 30, 2261–2285 (1994)

    ADS  Google Scholar 

  19. Howard, A.D., Dietrich, W.E., Seidl, M.A.: Modeling fluvial erosion on regional to continental scales. J. Geophys. Res. 99, 13971–13986 (1994)

    ADS  Google Scholar 

  20. Izumi, N., Parker, G.: Inception of channelization and drainage basin formation: upstream-driven theory. J. Fluid Mech. 283, 341–363 (1995)

    ADS  MathSciNet  MATH  Google Scholar 

  21. Giacometti, A., Maritan, A., Banavar, J.R.: Continuum model for river networks. Phys. Rev. Lett. 75, 577–580 (1995)

    ADS  Google Scholar 

  22. Banavar, J.R., Colaiori, F., Flammini, A., Giacometti, A., Maritan, A., Rinaldo, A.: Sculpting of a fractal river basin. Phys. Rev. Lett. 78, 4522–4525 (1997)

    ADS  Google Scholar 

  23. Somfai, E., Sander, L.M.: Scaling and river networks: a Landau theory for erosion. Phys. Rev. E 56, R5–R8 (1997)

    ADS  Google Scholar 

  24. Sornette, D., Zhang, Y.-C.: Non-linear Langevin model of geomorphic erosion processes. Geophys. J. Int. 113, 382–386 (1993)

    ADS  Google Scholar 

  25. Kramer, S., Marder, M.: Evolution of river networks. Phys. Rev. Lett. 68, 205–208 (1992)

    ADS  Google Scholar 

  26. Dodds, P.S., Rothman, D.H.: Scaling, universality, and geomorphology. Annu. Rev. Earth Planet Sci. 28, 571–610 (2000)

    ADS  Google Scholar 

  27. Giacometti, A.: Local minimal energy landscapes in river networks. Phys. Rev. E 62, 6042–6051 (2000)

    ADS  Google Scholar 

  28. Chan, K.K., Rothman, D.H.: Coupled length scales in eroding landscapes. Phys. Rev. E 63, 055102(R) (2001)

    ADS  Google Scholar 

  29. Newman, W.I., Turcotte, D.L.: Cascade model for fluvial geomorphology. Geophys. J. Int. 100, 433–439 (1990)

    ADS  Google Scholar 

  30. Turcotte, D.L.: Fractals and Chaos in Geology and Geophysics. Cambridge University Press, New York (1992)

    MATH  Google Scholar 

  31. Mark, D.M., Aronson, P.B.: Scale-dependent fractal dimensions of topographic surfaces: an empirical investigation, with applications in geomorphology and computer mapping. Math. Geol. 16, 671–683 (1984)

    Google Scholar 

  32. Matsushita, M., Ouchi, S.: On the self-affinity of various curves. Physica (Amsterdam) 38D, 246–251 (1989)

    ADS  MathSciNet  Google Scholar 

  33. Matsushita, M., Ouchi, S.: Measurement of self-affinity on surfaces as a trial application of fractal geometry to landform analysis. Geomorphology 5, 115–130 (1992)

    ADS  Google Scholar 

  34. Chase, C.G.: Fluvial landsculpting and the fractal dimension of topography. Geomorphology 5, 39–57 (1992)

    ADS  Google Scholar 

  35. Lifton, N.A., Chase, C.G.: Tectonic, climatic and lithologic influences on landscape fractal dimension and hypsometry: implications for landscape evolution in the San Gabriel Mountains. California. Geomorphology 5, 77–114 (1992)

    ADS  Google Scholar 

  36. Barenblatt, G.I., Zhivago, A.V., Neprochnov, YuP, Ostrovskiy, A.A.: The fractal dimension: a quantitative characteristic of ocean-bottom relief. Oceanology 24, 695–697 (1984)

  37. Gilbert, L.E.: Are topographic data sets fractal? Pure Appl. Geophys. 131, 241–254 (1989)

    ADS  Google Scholar 

  38. Norton, D., Sorenson, S.: Variations in geometric measures of topographic surfaces underlain by fractured granitic plutons. Pure Appl. Geophys. 131, 77–97 (1989)

    ADS  Google Scholar 

  39. Czirok, A., Somfai, E., Vicsek, J.: Experimental evidence for self-affine roughening in a micromodel of geomorphological evolution. Phys. Rev. Lett. 71, 2154–2157 (1993)

    ADS  Google Scholar 

  40. Antonov, N.V., Kakin, P.I.: Scaling in erosion of landscapes: renormalization group analysis of a model with turbulent mixing. J. Phys. A 50, 085002 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  41. Antonov, N.V., Kakin, P.I.: Scaling in landscape erosion: renormalization group analysis of a model with infinitely many couplings. Theor. Math. Phys. 190(2), 193–203 (2017)

    MATH  Google Scholar 

  42. Duclut, C., Delamotte, B.: Nonuniversality in the erosion of tilted landscapes. Phys. Rev. E 96, 012149 (2017)

    ADS  MathSciNet  Google Scholar 

  43. Berges, J., Tetradis, N., Wetterich, C.: Non-perturbative renormalization flow in quantum field theory and statistical physics. Phys. Rep. 363, 223–386 (2002)

    ADS  MathSciNet  MATH  Google Scholar 

  44. Gies, H.: Introduction to the functional RG and applications to gauge theories. Lect. Notes Phys. 852, 287–348 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  45. Delamotte, B.: An introduction to the nonperturbative renormalization group. Lect. Notes Phys. 852, 49–132 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  46. Edwards, S.F., Wilkinson, D.R.: The surface statistics of a granular aggregate. Proc. R. Soc. Lond. A 381, 17–31 (1982)

    ADS  Google Scholar 

  47. Caldarelli, G., Giacometti, A., Maritan, A., Rodriguez-Iturbe, I., Rinaldo, A.: Randomly pinned landscape evolution. Phys. Rev. E 55(5), R4865(R) (1997)

    ADS  Google Scholar 

  48. Hinrichsen, H.: Non-equilibrium critical phenomena and phase transitions into absorbing states. Adv. Phys. 49, 815–958 (2000)

    ADS  Google Scholar 

  49. Lee, C., Kim, J.M.: Depinning transition of the quenched Kardar–Parisi–Zhang equation. J. Korean Phys. Soc. 47(1), 13–17 (2005)

    Google Scholar 

  50. Jeong, H., Kahng, B., Kim, D.: Anisotropic surface growth model in disordered media. Phys. Rev. Lett. 25, 5094–5097 (1996)

    ADS  Google Scholar 

  51. Kim, H.-J., Kim, I.-M., Kim, J.M.: Hybridized discrete model for the anisotropic Kardar–Parisi–Zhang equation. Phys. Rev. E 58, 1144–1147 (1998)

    ADS  Google Scholar 

  52. Narayan, O., Fisher, D.S.: Threshold critical dynamics of driven interfaces in random media. Phys. Rev. B 48(1), 7030–7042 (1993)

    ADS  Google Scholar 

  53. Janssen, H.K.: Renormalized field theory of the Gribov process with quenched disorder. Phys. Rev. E 55(5), 6253–6256 (1997)

    ADS  Google Scholar 

  54. Moreira, A.G., Dickman, R.: Critical dynamics of the contact process with quenched disorder. Phys. Rev. E 54, R3090 (1996)

    ADS  Google Scholar 

  55. Webman, I., ben Avraham, D., Cohen, A., Havlin, S.: Dynamical phase transitions in a random environment. Phil. Mag. B 77, 1401–1412 (1998)

    ADS  Google Scholar 

  56. Kardar, M., Parisi, G., Zhang, Y.-C.: Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56, 889–892 (1986)

    ADS  MATH  Google Scholar 

  57. Pavlik, S.I.: Scaling for a growing phase boundary with nonlinear diffusion. JETP 79, 303–306 (1994)

    ADS  Google Scholar 

  58. Antonov, N.V., Vasil’ev, A.N.: The quantum-field renormalization group in the problem of a growing phase boundary. JETP 81, 485–489 (1995)

    ADS  Google Scholar 

  59. Hwa, T., Kardar, M.: Dissipative transport in open systems: an investigation of self-organized criticality. Phys. Rev. Lett. 62(16), 1813–1816 (1989)

    ADS  Google Scholar 

  60. Vasiliev, A.N.: The Field Theoretic Renormalization Group in Critical Behavior Theory and Stochastic Dynamics. Chapman & Hall/CRC, Boca Raton (2004)

    Google Scholar 

  61. Martin, P.C., Siggia, E.D., Rose, H.A.: Statistical dynamics of classical systems. Phys. Rev. A 8, 423–437 (1973)

    ADS  Google Scholar 

  62. De Dominicis, C.: Techniques de renormalisation de la theorie des champs et dynamique des phenomenes critiques. J. Phys. (Paris) C 1, 247–253 (1976)

  63. Janssen, H.-K.: On a Lagrangean for classical field dynamics and renormalization group calculations of dynamical critical properties. Z. Phys. B 23, 377–380 (1976)

    ADS  Google Scholar 

  64. Bausch, R., Janssen, H.-K., Wagner, H.: Renormalized field theory of critical dynamics. Z. Phys. B 24, 113–127 (1976)

    ADS  Google Scholar 

  65. Zinn-Justin, J.: Quantum Field Theory and Critical Phenomena. Clarendon, Oxford (1989)

    MATH  Google Scholar 

  66. Van Kampen, N.G.: Stochastic Processes in Physics and Chemistry, 3rd edn. North-Holland, New York (2007)

    MATH  Google Scholar 

  67. Gardiner, C.: Stochastic Methods: A Handbook for the Natural and Social Sciences, 4th edn. Springer, New York (2009)

    MATH  Google Scholar 

  68. Kakin, P.I., Lebedev, N.M.: Critical behavior of certain non-equilibrium systems with a quenched random noise. Vestnik SPbSU. Phys. Chem. 4(62), 398–416 (2017)

    Google Scholar 

  69. Parisi, G., Sourlas, N.: Random magnetic fields, supersymmetry, and negative dimensions. Phys. Rev. Lett. 43, 744–745 (1979)

    ADS  Google Scholar 

  70. Parisi, G., Sourlas, N.: Supersymmetric field theories and stochastic differential equations. Nucl. Phys. B 206, 321–332 (1982)

    ADS  MathSciNet  MATH  Google Scholar 

  71. Popov, V.N.: Functional Integrals in Quantum Field Theory and Statistical Physics. Springer, New York (1983)

    MATH  Google Scholar 

  72. Faddeev, L.D., Slavnov, A.A.: Gauge Fields: An Introduction to Quantum Theory. CRC, Boca Raton (1993)

    Google Scholar 

  73. Kardar, M., Zhang, Y.-C.: Scaling of directed polymers in random media. Phys. Rev. Lett. 58, 2087–2090 (1987)

    ADS  Google Scholar 

  74. Bouchaud, J.P., Mézard, M., Parisi, G.: Scaling and intermittency in Burgers turbulence. Phys. Rev. E 52, 3656–3674 (1995)

    ADS  MathSciNet  Google Scholar 

  75. Frey, E., Täuber, U.C., Hwa, T.: Mode-coupling and renormalization group results for the noisy Burgers equation. Phys. Rev. E 53, 4424–4438 (1996)

    ADS  Google Scholar 

  76. Medina, E., Hwa, T., Kardar, M., Zhang, Y.-C.: Burgers equation with correlated noise: renormalization-group analysis and applications to directed polymers and interface growth. Phys. Rev. A 39, 3053–3075 (1989)

    ADS  MathSciNet  Google Scholar 

  77. Lam, C.-H., Sander, L.M.: Surface growth with temporally correlated noise. Phys. Rev. A 46, R6128 (1992)

    ADS  Google Scholar 

  78. Doherty, J.P., Moore, M.A., Kim, J.M., Bray, A.J.: Generalizations of the Kardar–Parisi–Zhang equation. Phys. Rev. Lett. 72, 2041–2044 (1994)

    ADS  MATH  Google Scholar 

  79. Kardar, M., Zee, A.: Matrix generalizations of some dynamic field theories. Nucl. Phys. B 464, 449–462 (1996)

    ADS  MathSciNet  MATH  Google Scholar 

  80. Bork, L.V., Ogarkov, S.L.: The Kardar–Parisi–Zhang equation and its matrix generalization. Theor. Math. Phys. 178, 359–373 (2014)

    MathSciNet  MATH  Google Scholar 

  81. Antonov, N.V., Kakin, P.I.: Random interface growth in a random environment: renormalization group analysis of a simple model. Theor. Math. Phys. 185(1), 1391–1407 (2015)

    MathSciNet  MATH  Google Scholar 

  82. Niggemann, O., Hinrichsen, H.: Sinc noise for the Kardar–Parisi–Zhang equation. Phys. Rev. E 97, 062125 (2018)

    ADS  MathSciNet  Google Scholar 

  83. Wolf, D.E.: Kinetic roughening of vicinal surfaces. Phys. Rev. Lett. 67, 1783–1786 (1991)

    ADS  Google Scholar 

  84. Kloss, T., Canet, L., Wschebor, N.: Strong-coupling phases of the anisotropic Kardar–Parisi–Zhang equation. Phys. Rev. E 90(6), 062133 (2014)

    ADS  Google Scholar 

  85. Antonov, N.V., Kakin, P.I.: Field-Theoretic ronormalization group in a model of anisotropic grows of an interface. Vestnik SPbSU. Phys. Chem. 3(61), 348–361 (2016)

    Google Scholar 

  86. Forster, D., Nelson, D.R., Stephen, M.J.: Large-distance and long-time properties of a randomly stirred fluid. Phys. Rev. A 16, 732–749 (1977)

    ADS  MathSciNet  Google Scholar 

  87. Frey, E., Täuber, U.C.: Two-loop renormalization-group analysis of the Burgers–Kardar–Parisi–Zhang equation. Phys. Rev. E 50, 1024–1045 (1994)

    ADS  MathSciNet  Google Scholar 

  88. Lässig, M.: On the renormalization of the Kardar–Parisi–Zhang equation. Nucl. Phys. B 448, 559–574 (1995)

    ADS  Google Scholar 

  89. Wiese, K.J.: On the perturbation expansion of the KPZ equation. J. Stat. Phys. 93, 143–154 (1998)

    ADS  MathSciNet  MATH  Google Scholar 

  90. Canet, L., Chaté, H., Delamotte, B., Wschebor, N.: Nonperturbative renormalization group for the Kardar–Parisi–Zhang equation. Phys. Rev. Lett. 104, 150601 (2010)

    ADS  Google Scholar 

  91. Kloss, T., Canet, L., Wschebor, N.: Nonperturbative renormalization group for the stationary Kardar–Parisi–Zhang equation: scaling functions and amplitude ratios in 1+1, 2+1, and 3+1 dimensions. Phys. Rev. E 86, 051124 (2012)

    ADS  Google Scholar 

  92. Amit, D.J.: Field Theory, Renormalization Group, and Critical Phenomena, 2nd edn. World Scientific, Singapore (1984)

    Google Scholar 

  93. Ramond, P.: Field Theory: A Modern Primer. Benjamin/Cummings Publishing Company, San Francisco (1981)

    MATH  Google Scholar 

  94. Imbrie, I.Z., Spencer, T.: Diffusion of directed polymers in a random environment. J. Stat. Phys. 52, 609–626 (1988)

    ADS  MathSciNet  MATH  Google Scholar 

  95. Cook, J., Derrida, B.: Directed polymers in a random medium: 1/d expansion. Europhys. Lett. 10, 195–199 (1989)

    ADS  Google Scholar 

  96. Evans, M.R., Derrida, B.: Improved bounds for the transition temperature of directed polymers in a finite-dimensional random medium. J. Stat. Phys. 69, 427–437 (1992)

    ADS  MATH  Google Scholar 

  97. Tang, L.-H., Nattermann, T., Forrest, B.M.: Multicritical and crossover phenomena in surface growth. Phys. Rev. Lett. 65, 2422–2425 (1990)

    ADS  Google Scholar 

  98. Nattermann, T., Tang, L.-H.: Kinetic surface roughening. I. The Kardar–Parisi–Zhang equation in the weak-coupling regime. Phys. Rev. A 45, 7156–7161 (1992)

    ADS  Google Scholar 

  99. Doty, C.A., Kosterlitz, J.M.: Exact dynamical exponent at the Kardar–Parisi–Zhang roughening transition. Phys. Rev. Lett. 69, 1979–1981 (1992)

    ADS  Google Scholar 

  100. Cook, J., Derrida, B.: Directed polymers in a random medium: 1/d expansion and the n-tree approximation. J. Phys. A 23, 1523–1554 (1990)

    ADS  MathSciNet  MATH  Google Scholar 

  101. Lässig, M., Kinzelbach, H.: Upper critical dimension of the Kardar–Parisi–Zhang equation. Phys. Rev. Lett. 78, 903–906 (1997)

    ADS  Google Scholar 

  102. Colaiori, F., Moore, M.: Upper critical dimension, dynamic exponent, and scaling functions in the mode-coupling theory for the Kardar–Parisi–Zhang equation. Phys. Rev. Lett. 86, 3946–3949 (2001)

    ADS  Google Scholar 

  103. Fogedby, H.C.: Localized growth modes, dynamic textures, and upper critical dimension for the Kardar–Parisi–Zhang equation in the weak-noise limit. Phys. Rev. Lett. 94, 195702 (2005)

    ADS  Google Scholar 

  104. Fogedby, H.C.: Kardar–Parisi–Zhang equation in the weak noise limit: pattern formation and upper critical dimension. Phys. Rev. E 73, 031104 (2006)

    ADS  MathSciNet  Google Scholar 

  105. Fogedby, H.C.: Patterns in the Kardar–Parisi–Zhang equation. J. Phys. (Pramana) 71, 253–262 (2008)

    ADS  Google Scholar 

  106. Katzav, E., Schwartz, M.: Existence of the upper critical dimension of the Kardar–Parisi–Zhang equation. Physica A 309, 69–78 (2002)

    ADS  MATH  Google Scholar 

  107. Schwartz, M., Perlsman, E.: Upper critical dimension of the Kardar–Parisi–Zhang equation. Phys. Rev. E 85, 050103(R) (2012)

    ADS  Google Scholar 

  108. Marinari, E., Pagnani, A., Parisi, G., Raćz, Z.: Width distributions and the upper critical dimension of Kardar–Parisi–Zhang interfaces. Phys. Rev. E 65, 026136 (2002)

    ADS  Google Scholar 

  109. Alves, S.G., Oliveira, T.J., Ferreira, S.C.: Universality of fluctuations in the Kardar–Parisi–Zhang class in high dimensions and its upper critical dimension. Phys. Rev. E 90, 020103(R) (2014)

    ADS  Google Scholar 

  110. Antonov, N.V.: The renormalization group in the problem of turbulent convection of a passive scalar impurity with nonlinear diffusion. JETP 85, 898–906 (1997)

    ADS  Google Scholar 

  111. Srednicky, M.: Quantum Field Theory, p. 371. Cambridge University Press, Cambridge (2012)

    Google Scholar 

  112. Halperin, B.I., Lubensky, T.C., Ma, S.K.: First-order phase transitions in superconductors and smectic-A liquid crystals. Phys. Rev. Lett. 32, 292–295 (1974)

    ADS  Google Scholar 

  113. Dudka, M., Folk, R., Moser, G.: Gauge dependence of the critical dynamics at the superconducting phase transition. Condens. Matter Phys. 10(2), 189–200 (2007)

    Google Scholar 

  114. Bak, P., Tang, C., Wiesenfeld, K.: Self-organized criticality: an explanation of the 1/f noise. Phys. Rev. Lett. 59, 381–384 (1987)

    ADS  Google Scholar 

  115. Tang, C., Bak, P.: Critical exponents and scaling relations for self-organized critical phenomena. Phys. Rev. Lett. 60, 2347–2350 (1988)

    ADS  Google Scholar 

  116. Bak, P., Sneppen, K.: Punctuated equilibrium and criticality in a simple model of evolution. Phys. Rev. Lett. 71, 4083–4086 (1993)

    ADS  Google Scholar 

  117. Bak, P.: How Nature Works: The Science of Self-organized Criticality. Copernicus, New York (1996)

    MATH  Google Scholar 

  118. Hwa, T., Kardar, M.: Avalanches, hydrodynamics, and discharge events in models of sandpiles. Phys. Rev. A 45, 7002–7023 (1992)

    ADS  Google Scholar 

  119. Antonov, N.V., Kakin, P.I.: Effects of random environment on a self-organized critical system: renormalization group analysis of a continuous model. EPJ. Web Conf. 108, 02009 (2016)

    Google Scholar 

  120. Tadić, B.: Disorder-induced critical behavior in driven diffusive systems. Phys. Rev. E 58, 168–173 (1998)

    ADS  Google Scholar 

  121. Golner, G.R.: Investigation of the potts model using renormalization-group techniques. Phys. Rev. A 8, 3419–3422 (1973)

    ADS  Google Scholar 

  122. Zia, R.K.P., Wallace, D.J.: Critical behaviour of the continuous n-component Potts model. J. Phys. A 8, 1495–1507 (1975)

    ADS  Google Scholar 

  123. Amit, D.J.: Renormalization of the Potts model. J. Phys. A 9, 1441–1459 (1976)

    ADS  Google Scholar 

  124. de Alcantara Bonfim, O.F., Kirkham, J.E., McKane, A.J.: Critical exponents for the percolation problem and the Yang-Lee edge singularity. J. Phys. A 14, 2391–2413 (1981)

    ADS  Google Scholar 

  125. Prudnikov, V.V., Prudnikov, P.V., Vakilov, A.N.: Field-Theoretic and Numerical Description Methods for Critical Phenomena in Structure-Disordered Systems. F.M. Dostoevsky University, Omsk (2012)

    Google Scholar 

  126. Duclut, C., Delamotte, B.: Frequency regulators for the nonperturbative renormalization group: a general study and the model A as a benchmark. Phys. Rev. E 95, 012107 (2017)

    ADS  MathSciNet  Google Scholar 

  127. Canet, L.: Strong-Coupling Fixed Point of the Kardar–Parisi–Zhang Equation. Arxiv:cond-mat/0509541 (2005)

  128. Canet, L., Delamotte, B., Wschebor, N.: Fully developed isotropic turbulence: symmetries and exact identities. Phys. Rev. E 91, 053004 (2015)

    ADS  MathSciNet  Google Scholar 

  129. Canet, L., Delamotte, B., Wschebor, N.: Fully developed isotropic turbulence: nonperturbative renormalization group formalism and fixed-point solution. Phys. Rev. E 93, 063101 (2016)

    ADS  Google Scholar 

  130. Canet, L., Chate, H., Delamotte, B., Wschebor, N.: Nonperturbative renormalization group for the Kardar–Parisi–Zhang equation: general framework and first applications. Phys. Rev. E 84, 061128 (2011)

    ADS  Google Scholar 

  131. Kloss, T., Canet, L., Delamotte, B., Wschebor, N.: Kardar–Parisi–Zhang equation with spatially correlated noise: a unified picture from nonperturbative renormalization group. Phys. Rev. E 89, 022108 (2014)

    ADS  Google Scholar 

  132. Squizzato, D., Canet, L.: Kardar–Parisi–Zhang Equation with temporally correlated noise: a non-perturbative renormalization group approach. arXiv: 1907.02256

  133. Canet, L., Chate, H., Delamotte, B.: General framework of the non-perturbative renormalization group for non-equilibrium steady states. J. Phys. A 44, 495001 (2011)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are thankful to C. Duclut for bringing the work [42] to our attention. We also thank L. Ts. Adzhemyan, N.M. Gulitskiy, M. Hnatich, M.V. Kompaniets, and M.Yu. Nalimov for fruitful discussions. We are also thankful to the referees for useful comments and suggestions. The work was supported by the Foundation for the Advancement of Theoretical Physics and Mathematics “BASIS”, and by the RFBR according to the research project 18-32-00238 (all the results concerning the KPZ model in Sect. 3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. I. Kakin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Alessandro Giuliani.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonov, N.V., Kakin, P.I. & Lebedev, N.M. Static Approach to Renormalization Group Analysis of Stochastic Models with Spatially Quenched Noise. J Stat Phys 178, 392–419 (2020). https://doi.org/10.1007/s10955-019-02436-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-019-02436-8

Keywords

Navigation