Skip to main content
Log in

Spontaneous Symmetry Breaking in Coupled Bose–Einstein Condensates

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study a system of two hardcore bosonic Hubbard models weakly coupled with each other by tunneling. Assuming that the single uncoupled model exhibits off-diagonal long-range order, we prove that the coupled system exhibits spontaneous symmetry breaking (SSB) in the infinite volume limit, in the sense that the two subsystems maintain a definite relative U(1) phase when the tunneling is turned off. Although SSB of the U(1) phase is never observable in a single system, SSB of the relative U(1) phase is physically meaningful and observable by interference experiments. The present theorem is made possible by the rigorous theory of low-lying states and SSB in quantum antiferromagnets developed over the years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We here take the “statistical mechanical point of view”, and regard the Bose–Einstein condensation as a phenomenon in the infinite volume limit.

  2. We expect that the limits in (7) exist, but still have no proof. We used \(\liminf \) here to be mathematically rigorous. The same comment applies to other expressions involving \(\liminf \).

  3. In fact it has been conjectured that \(m^*=\sqrt{2\lambda ^*(\rho )}\), where \(\lambda ^*(\rho )=\lim _{L\uparrow \infty }\left\langle \Phi _\mathrm {GS}\left| (\hat{\mathcal{O}}^{(\alpha )}/L^d)^2\right| \Phi _\mathrm {GS}\right\rangle \) is the infinite volume version of \(\lambda (\rho )\), but there is no proof.

  4. The interference pattern is observed after switching off the trapping potential and letting the particles evolve almost freely. We should note that there is an essentially different class of interference phenomena between two Bose–Einstein condensates. It is known that two condensates which have no fixed relative phase (and hence well approximated by \(\left| \Phi _\mathrm {GS}\right\rangle \otimes \left| \Phi _\mathrm {GS}\right\rangle \)) also exhibit interference. See, e.g., [25].

  5. To be rigorous, the limits in (14) and (15) should be properly interpreted to be consistent with (12).

  6. Recall that in the ferromagnetic Ising model, for example, one considers a similar double limit \(\lim _{h\downarrow 0}\lim _{L\uparrow \infty }\left\langle \sigma _x\right\rangle \) to detect possible spontaneous symmetry breaking, where h is the external magnetic field.

  7. If \(\rho =1/2\), the second term on the right-hand side can be replaced by \(C_2M^2/L^d\). We expect that the same bound is possible for general \(\rho \), but cannot prove it for technical reasons.

  8. In [12], only the existence of such \(M_{\mathrm{max}}(L)\) was proved. We expect that any diverging \(M_{\mathrm{max}}(L)\) such that \(M_{\mathrm{max}}(L)\lesssim L^{d/2}\) will do, but there is no proof.

  9. Note that a state that exhibits SSB inevitably exhibits LRO.

  10. We believe that the definition (22) of \(\left| \Xi _\theta \right\rangle \) is a simple and mathematical natural way to construct such states with symmetry breaking and vanishing fluctuation. But this is not the only way to realize such states. See [13].

References

  1. Dalfovo, F., Giorgini, S., Pitaevskii, L.P., Stringari, S.: Theory of Bose–Einstein condensation in trapped gases. Rev. Mod. Phys. 71, 463–512. arXiv:cond-mat/9806038 (1999)

    Article  ADS  Google Scholar 

  2. Leggett, A.J.: Bose–Einstein condensation in the alkali gases: some fundamental concepts. Rev. Mod. Phys. 73, 307–356 (2001)

    Article  ADS  Google Scholar 

  3. Bloch, I., Dalibard, J., Zwerger, W.: Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964. arXiv:0704.3011 (2008)

    Article  ADS  Google Scholar 

  4. Pitaevskii, L., Stringari, S.: Bose–Einstein Condensation and Superfluidity. Oxford University Press, Oxford (2016)

    Book  Google Scholar 

  5. Leggett, A.J., Sols, F.: On the concept of spontaneous broken gauge symmetry in condensed matter physics. J. Stat. Phys. 21, 353–364 (1991)

    Google Scholar 

  6. Anderson, P.W.: An approximate quantum theory of the antiferromagnetic ground state. Phys. Rev. 86, 694 (1952)

    Article  ADS  Google Scholar 

  7. Lhuillier, C.: Frustrated Quantum Magnets. Lecture Notes at “Ecole de troisieme cycle de Suisse Romande”. arXiv:cond-mat/0502464 (2002)

    Chapter  Google Scholar 

  8. Horsch, P., von der Linden, W.: Spin-correlations and low lying excited states of the spin-1/2 Heisenberg antiferromagnet on a square lattice. Z. Phys. B 72, 181–193 (1988)

    Article  ADS  Google Scholar 

  9. Kaplan, T.A., Horsch, P., von der Linden, W.: Order parameter in quantum antiferromagnets. J. Phys. Soc. Jpn. 11, 3894–3898 (1989)

    Article  ADS  Google Scholar 

  10. Koma, T., Tasaki, H.: Symmetry breaking in Heisenberg antiferromagnets. Commun. Math. Phys. 158, 191–214. https://projecteuclid.org/euclid.cmp/1104254136 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  11. Koma, T., Tasaki, H.: Symmetry breaking and finite-size effects in quantum many-body systems. J. Stat. Phys. 76, 745–803. arXiv:cond-mat/9708132 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  12. Tasaki, H.: Long-range order, “tower” of states, and symmetry breaking in lattice quantum systems. J. Stat. Phys. 174, 735–761. (The version in the arXiv is more complete than the published version.) arXiv:1807.05847 (2019)

  13. Tasaki, H.: Physics and Mathematics of Quantum Many-Body Systems. Springer, New York (1987)

    Google Scholar 

  14. Andrews, M.R., Townsend, C.G., Miesner, H.-J., Durfee, D.S., Kurn, D.M., Ketterle, W.: Observation of interference between two bose condensates. Science 275, 637–640 (1997)

    Article  Google Scholar 

  15. Gring, M., Kuhnert, M., Langen, T., Kitagawa, T., Rauer, B., Schreitl, M., Schmiedmayer, J.: Relaxation and prethermalization in an isolated quantum system. Science, 337, 1318–1322. arXiv:1112.0013 (2012)

    Article  ADS  Google Scholar 

  16. Herring, G., Kevrekidis, P.G., Malomed, B.A., Carretero-Gonzalez, R., Frantzeskakis, D.J.: Symmetry breaking in linearly coupled dynamical lattices. Phys. Rev. E 76, 066606. arXiv:0704.3284 (2007)

  17. Marshall, W.: Antiferromagnetism. Proc. R. Soc. A 232, 48 (1955)

    Article  ADS  Google Scholar 

  18. Lieb, E.H., Mattis, D.: Ordering energy levels in interacting spin chains. J. Math. Phys. 3, 749–751 (1962)

    Article  ADS  Google Scholar 

  19. Kennedy, T., Lieb, E.H., Shastry, B.S.: Existence of Néel order in some spin-\(1/2\) Heisenberg antiferromagnets. J. Stat. Phys. 53, 1019 (1988)

    Article  ADS  Google Scholar 

  20. Kennedy, T., Lieb, E.H., Shastry, B.S.: The XY model has long-range order for all spins and all dimensions greater than one. Phys. Rev. Lett. 61, 2582 (1988)

    Article  ADS  Google Scholar 

  21. Kubo, K., Kishi, T.: Existence of long-range order in the XXZ model. Phys. Rev. Lett. 61, 2585 (1988)

    Article  ADS  Google Scholar 

  22. Dyson, F.J., Lieb, E.H., Simon, B.: Phase transitions in quantum spin systems with isotropic and nonisotropic interactions. J. Stat. Phys. 18, 335–382 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  23. Neves, E.J., Perez, J.F.: Long range order in the ground state of two-dimensional antiferromagnets. Phys. Lett. 114A, 331–333 (1986)

    Article  ADS  Google Scholar 

  24. Ring, P., Schuck, P.: The Nuclear Many-Body Problem. Springer, New York (1980)

    Book  Google Scholar 

  25. Javanainen, J., Yoo, S.M.: Quantum phase of a Bose–Einstein condensate with an arbitrary number of atoms. Phys. Rev. Lett. 76, 161 (1996)

    Article  ADS  Google Scholar 

  26. Mattis, D.: Ground-state symmetry in XY model of magnetism. Phys. Rev. Lett. 42, 1503 (1979)

    Article  ADS  Google Scholar 

  27. Nishimori, H.: Spin quantum number in the ground state of the Mattis–Heisenberg model. J. Stat. Phys. 26, 839–845 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  28. Fetter, A.L., Walecka, J.D.: Quantum Theory of Many-Particle Systems. Dover, New York (2003)

    MATH  Google Scholar 

  29. Shimizu, A., Miyadera, T.: Charge superselection rule does not rule out pure states of subsystems to be coherent superpositions of states with different charges, preprint. arXiv:cond-mat/0102429 (2001)

  30. Shimizu, A., Miyadera, T.: Robustness of wave functions of interacting many Bosons in a leaky box. Phys. Rev. Lett. 85, 688–691 (2000). (Errata: Phys. Rev. Lett. 86, 4422 (2001))

  31. Ruelle, D.: Statistical Mechanics: Rigorous Results. World Scientific, Singapore (1999)

    Book  Google Scholar 

  32. Tasaki, H.: Statistical Mechanics, (Baifukan, 2008). The English version by H. Tasaki and G. Paquette is in preparation (2008) (in Japanese)

Download references

Acknowledgements

I wish to thank Akira Shimizu and Masahito Ueda for indispensable discussions and comments which made the present work possible, and Tohru Koma, Akinori Tanaka, and Haruki Watanabe for useful discussions on related topics. I also thank two anonymous referees for useful suggestions. The present work was supported by JSPS Grants-in-Aid for Scientific Research No. 16H02211.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hal Tasaki.

Additional information

Communicated by Alessandro Giuliani.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Properties of the State \(\left| \Theta ^{L,M}\right\rangle \)

Appendix: Properties of the State \(\left| \Theta ^{L,M}\right\rangle \)

1.1 A.1 Expectation Value of \(\hat{a}^\dagger _{(x,\mathrm{a})}\hat{a}_{(x,\mathrm{b})}\)

Let us prove (31). Here we make use of techniques and results from [12]. For \(\nu =\mathrm a,b\), let \(\hat{o}_\nu ^{+}:=L^{-d}\sum _{x\in \Lambda }\hat{a}^\dagger _{(x,\nu )}\) and \(\hat{o}_\nu ^{-}:=L^{-d}\sum _{x\in \Lambda }\hat{a}_{(x,\nu )}\). We here abbreviate \(\left| \Theta ^{L,M}\right\rangle \) as \(\left| \Theta \right\rangle \). From (40) and (20), we have

$$\begin{aligned} \left| \Theta \right\rangle =&\frac{1}{\sqrt{2M+1}} \left\{ \left| \Phi _{\mathrm{GS}}^{\mathrm{a}}\right\rangle \left| \Phi _{\mathrm{GS}}^{\mathrm{b}}\right\rangle +\sum _{n=1}^M\frac{(\hat{o}_{\mathrm{a}}^+)^n\left| \Phi _{\mathrm{GS}}^{\mathrm{a}}\right\rangle }{\Vert (\hat{o}_{\mathrm{a}}^+)^n\left| \Phi _{\mathrm{GS}}^{\mathrm{a}}\right\rangle \Vert }\frac{(\hat{o}_{\mathrm{b}}^-)^n\left| \Phi _{\mathrm{GS}}^{\mathrm{b}}\right\rangle }{\Vert (\hat{o}_{\mathrm{b}}^-)^n\left| \Phi _{\mathrm{GS}}^{\mathrm{b}}\right\rangle \Vert } \nonumber \right. \\&\left. +\sum _{n=1}^M\frac{(\hat{o}_{\mathrm{a}}^-)^n\left| \Phi _{\mathrm{GS}}^{\mathrm{a}}\right\rangle }{\Vert (\hat{o}_{\mathrm{a}}^-)^n\left| \Phi _{\mathrm{GS}}^{\mathrm{a}}\right\rangle \Vert }\frac{(\hat{o}_{\mathrm{b}}^+)^n\left| \Phi _{\mathrm{GS}}^{\mathrm{b}}\right\rangle }{\Vert (\hat{o}_{\mathrm{b}}^+)^n\left| \Phi _{\mathrm{GS}}^{\mathrm{b}}\right\rangle \Vert } \right\} , \end{aligned}$$
(42)

where \(\left| \Phi _{\mathrm{GS}}^{\mathrm{a}}\right\rangle \) and \(\left| \Phi _{\mathrm{GS}}^{\mathrm{b}}\right\rangle \) are exact copies of the ground state \(\left| \Phi _\mathrm {GS}\right\rangle \) of the Hamiltonian (1) for a single system with N particles.

To evaluate the expectation value \(\left\langle \Theta \right| \hat{a}^\dagger _{(x,\mathrm{a})}\hat{a}_{(x,\mathrm{b})}\left| \Theta \right\rangle \), we first see that

$$\begin{aligned} \hat{a}^\dagger _{(x,\mathrm{a})}\hat{a}_{(x,\mathrm{b})}\left| \Theta \right\rangle =\frac{1}{\sqrt{2M+1}}&\left\{ \sum _{n=1}^{M+1} \frac{\hat{a}^\dagger _{(x,\mathrm{a})}(\hat{o}_{\mathrm{a}}^+)^{n-1}\left| \Phi _{\mathrm{GS}}^{\mathrm{a}}\right\rangle }{\Vert (\hat{o}_{\mathrm{a}}^+)^{n-1}\left| \Phi _{\mathrm{GS}}^{\mathrm{a}}\right\rangle \Vert } \frac{\hat{a}_{(x,\mathrm{b})}(\hat{o}_{\mathrm{b}}^-)^{n-1}\left| \Phi _{\mathrm{GS}}^{\mathrm{b}}\right\rangle }{\Vert (\hat{o}_{\mathrm{b}}^-)^{n-1}\left| \Phi _{\mathrm{GS}}^{\mathrm{b}}\right\rangle \Vert } \nonumber \right. \\&\left. \quad +\sum _{n=0}^{M-1} \frac{\hat{a}^\dagger _{(x,\mathrm{a})}(\hat{o}_{\mathrm{a}}^-)^{n+1}\left| \Phi _{\mathrm{GS}}^{\mathrm{a}}\right\rangle }{\Vert (\hat{o}_{\mathrm{a}}^-)^{n+1}\left| \Phi _{\mathrm{GS}}^{\mathrm{a}}\right\rangle \Vert } \frac{\hat{a}_{(x,\mathrm{b})}(\hat{o}_{\mathrm{b}}^+)^{n+1}\left| \Phi _{\mathrm{GS}}^{\mathrm{b}}\right\rangle }{\Vert (\hat{o}_{\mathrm{b}}^+)^{n+1}\left| \Phi _{\mathrm{GS}}^{\mathrm{b}}\right\rangle \Vert } \right\} . \end{aligned}$$
(43)

By using (42) and (43), we get

$$\begin{aligned}&\left\langle \Theta \right| \hat{a}^\dagger _{(x,\mathrm{a})}\hat{a}_{(x,\mathrm{b})}\left| \Theta \right\rangle \nonumber \\&\quad =\frac{1}{2M+1} \left\{ \sum _{n=1}^{M+1} \frac{ \bigl \langle (\hat{o}_{\mathrm{a}}^-)^n\hat{a}^\dagger _{(x,\mathrm{a})}(\hat{o}_{\mathrm{a}}^+)^{n-1}\bigr \rangle _{\mathrm{a}}\,\, \bigl \langle (\hat{o}_{\mathrm{b}}^+)^n\hat{a}_{(x,\mathrm{b})}(\hat{o}_{\mathrm{b}}^-)^{n-1}\bigr \rangle _{\mathrm{b}} }{ \Vert (\hat{o}_{\mathrm{a}}^+)^{n}\left| \Phi _{\mathrm{GS}}^{\mathrm{a}}\right\rangle \Vert \Vert (\hat{o}_{\mathrm{a}}^+)^{n-1}\left| \Phi _{\mathrm{GS}}^{\mathrm{a}}\right\rangle \Vert \Vert (\hat{o}_{\mathrm{b}}^-)^{n}\left| \Phi _{\mathrm{GS}}^{\mathrm{b}}\right\rangle \Vert \Vert (\hat{o}_{\mathrm{b}}^-)^{n-1}\left| \Phi _{\mathrm{GS}}^{\mathrm{b}}\right\rangle \Vert } \nonumber \right. \\&\left. \qquad +\sum _{n=0}^{M-1} \frac{ \bigl \langle (\hat{o}_{\mathrm{a}}^+)^n\hat{a}^\dagger _{(x,\mathrm{a})}(\hat{o}_{\mathrm{a}}^-)^{n+1}\bigr \rangle _{\mathrm{a}}\,\, \bigl \langle (\hat{o}_{\mathrm{b}}^-)^n\hat{a}_{(x,\mathrm{b})}(\hat{o}_{\mathrm{b}}^+)^{n+1}\bigr \rangle _{\mathrm{b}} }{ \Vert (\hat{o}_{\mathrm{a}}^-)^{n}\left| \Phi _{\mathrm{GS}}^{\mathrm{a}}\right\rangle \Vert \Vert (\hat{o}_{\mathrm{a}}^-)^{n+1}\left| \Phi _{\mathrm{GS}}^{\mathrm{a}}\right\rangle \Vert \Vert (\hat{o}_{\mathrm{b}}^+)^{n}\left| \Phi _{\mathrm{GS}}^{\mathrm{b}}\right\rangle \Vert \Vert (\hat{o}_{\mathrm{b}}^+)^{n+1}\left| \Phi _{\mathrm{GS}}^{\mathrm{b}}\right\rangle \Vert } \right\} , \end{aligned}$$
(44)

where we wrote \(\left\langle \cdots \right\rangle _\nu =\left\langle \Phi ^\nu _{\mathrm{GS}}\right| \cdots \left| \Phi ^\nu _{\mathrm{GS}}\right\rangle \). Note that translation invariance implies, e.g.,

\(\left\langle (\hat{o}_{\mathrm{a}}^+)^n\hat{a}^\dagger _{(x,\mathrm{a})}(\hat{o}_{\mathrm{a}}^-)^{n+1}\right\rangle _{\mathrm{a}}=\left\langle (\hat{o}^+)^{n+1}(\hat{o}^-)^{n+1}\right\rangle \), where \(\left\langle \cdots \right\rangle =\left\langle \Phi _{\mathrm{GS}}\right| \cdots \left| \Phi _{\mathrm{GS}}\right\rangle \) and \(\hat{o}^{\pm }:=\hat{\mathcal{O}}^{\pm }/L^d\) are defined for the single system. We can thus rewrite (44) as

$$\begin{aligned}&\left\langle \Theta \right| \hat{a}^\dagger _{(x,\mathrm{a})}\hat{a}_{(x,\mathrm{b})}\left| \Theta \right\rangle \nonumber \\&\quad =\frac{1}{2M+1} \left\{ \sum _{n=1}^{M+1} \frac{ \bigl \langle (\hat{o}^-)^n(\hat{o}^+)^n\bigr \rangle \, \bigl \langle (\hat{o}^+)^n(\hat{o}^-)^n\bigr \rangle }{ \sqrt{\bigl \langle (\hat{o}^-)^n(\hat{o}^+)^n\bigr \rangle \,\bigl \langle (\hat{o}^-)^{n-1}(\hat{o}^+)^{n-1}\bigr \rangle \, \bigl \langle (\hat{o}^+)^n(\hat{o}^-)^n\bigr \rangle \,\bigl \langle (\hat{o}^+)^{n-1}(\hat{o}^-)^{n-1}\bigr \rangle } } \nonumber \right. \\&\left. \qquad +\sum _{n=0}^{M-1} \frac{ \bigl \langle (\hat{o}^+)^{n+1}(\hat{o}^-)^{n+1}\bigr \rangle \, \bigl \langle (\hat{o}^-)^{n+1}(\hat{o}^+)^{n+1}\bigr \rangle }{ \sqrt{ \bigl \langle (\hat{o}^+)^n(\hat{o}^-)^n\bigr \rangle \,\bigl \langle (\hat{o}^+)^{n+1}(\hat{o}^-)^{n+1}\bigr \rangle \, \bigl \langle (\hat{o}^-)^n(\hat{o}^+)^n\bigr \rangle \,\bigl \langle (\hat{o}^-)^{n+1}(\hat{o}^+)^{n+1}\bigr \rangle } } \right\} , \nonumber \\&\quad =\frac{2}{2M+1} \sum _{n=1}^M\sqrt{\frac{ \bigl \langle (\hat{o}^-)^n(\hat{o}^+)^n\bigr \rangle \,\bigl \langle (\hat{o}^+)^n(\hat{o}^-)^n\bigr \rangle }{ \bigl \langle (\hat{o}^-)^{n-1}(\hat{o}^+)^{n-1}\bigr \rangle \,\bigl \langle (\hat{o}^+)^{n-1}(\hat{o}^-)^{n-1}\bigr \rangle }}. \end{aligned}$$
(45)

Following [12], let \(\hat{p}=(\hat{o}^+\hat{o}^-+\hat{o}^-\hat{o}^+)/2\). Since \([\hat{o}^-,\hat{o}^+]=L^{-d}\), one finds that \((\hat{o}^-)^n(\hat{o}^+)^n=\hat{p}^n+O(L^{-d})\) and \((\hat{o}^+)^n(\hat{o}^-)^n=\hat{p}^n+O(L^{-d})\). See Lemma 4.1 of [12]. We therefore get

$$\begin{aligned} \left\langle \Theta \right| \hat{a}^\dagger _{(x,\mathrm{a})}\hat{a}_{(x,\mathrm{b})}\left| \Theta \right\rangle = \frac{2}{2M+1} \sum _{n=1}^M\frac{\left\langle \hat{p}^n\right\rangle }{\left\langle \hat{p}^{n-1}\right\rangle }+O(L^{-d}). \end{aligned}$$
(46)

It was proved in Lemma 4.2 of [12] that

$$\begin{aligned} \lim _{n\uparrow \infty }\liminf _{L\uparrow \infty }\frac{\left\langle \hat{p}^n\right\rangle }{\left\langle \hat{p}^{n-1}\right\rangle }=(m^*)^2. \end{aligned}$$
(47)

This, with (46), implies

$$\begin{aligned} \lim _{M\uparrow \infty }\liminf _{L\uparrow \infty }\left\langle \Theta \right| \hat{a}^\dagger _{(x,\mathrm{a})}\hat{a}_{(x,\mathrm{b})}\left| \Theta \right\rangle =(m^*)^2, \end{aligned}$$
(48)

which is the desired (31).

1.2 A.2 Energy Expectation Value

We shall prove (32). Let \(E_{\mathrm{GS}}\) be the ground state energy of the Hamiltonian (1) for a single system with N particles. From (21), which shows that \(\left| \Gamma _M\right\rangle \) has very low excitation energy, one readily finds that

$$\begin{aligned} \lim _{L\uparrow \infty }\frac{1}{L^d}\left\{ \left\langle \Theta ^{L,M}\right| \hat{H}^{\mathrm{tot}}_0\left| \Theta ^{L,M}\right\rangle -2E_{\mathrm{GS}}\right\} =0 \end{aligned}$$
(49)

for any M. This is almost the desired (32) since it is very likely that \(E^{\mathrm{tot}}_{\mathrm{GS},0}=2E_{\mathrm{GS}}\). But this equality cannot be proved in general and we need some work.

Define the ground state energy density (for the single system) by

$$\begin{aligned} {\tilde{\epsilon }}(\rho ):=\lim _{L\uparrow \infty }\frac{E_{\mathrm{GS}}}{L^d}, \end{aligned}$$
(50)

where L and N always satisfy \(\rho =N/L^d\). It is standard that the limit exists, and \({\tilde{\epsilon }}(\rho )\) extends to a convex function of \(\rho \in [0,1]\). See, e.g., [31, 32].

We then note that

$$\begin{aligned} \lim _{L\uparrow \infty }\frac{E^{\mathrm{tot}}_{\mathrm{GS},0}}{L^d}=\min _{\delta }\{{\tilde{\epsilon }}(\rho +\delta )+{\tilde{\epsilon }}(\rho -\delta )\}, \end{aligned}$$
(51)

where \(E^{\mathrm{tot}}_{\mathrm{GS},0}\) is the ground state energy of \(\hat{H}^{\mathrm{tot}}_0=\hat{H}_{\mathrm{a}}+\hat{H}_{\mathrm{b}}\) with total particle number 2N, and we again fix \(\rho =N/L^d\). But the right-hand side is equal to \(2{\tilde{\epsilon }}(\rho )\) because of the convexity. We have thus proved that

$$\begin{aligned} \lim _{L\uparrow \infty }\frac{1}{L^d}\bigl \{2E_{\mathrm{GS}}-E^{\mathrm{tot}}_{\mathrm{GS},0}\bigr \}=0. \end{aligned}$$
(52)

Then (49) and (52) imply the desired (32).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tasaki, H. Spontaneous Symmetry Breaking in Coupled Bose–Einstein Condensates. J Stat Phys 178, 379–391 (2020). https://doi.org/10.1007/s10955-019-02435-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-019-02435-9

Navigation