Skip to main content
Log in

A Lower Bound on the Partition Function for a Strictly Neutral Charge-Symmetric System

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A lower bound on the grand partition function of a classical charge-symmetric system is adapted to the neutral grand canonical ensemble, in which the system is constrained to have zero total charge. This constraint permits us to consider two-body potentials that are only conditionally positive definite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. A more general formula for \(\xi _0\) is given by (3.5).

  2. See e.g. Ref. [2]. Note that in relativistic statistical thermodynamics, the term “canonical” is used to refer to the conservation of quantum numbers as opposed to particle numbers.

  3. In (2.6) and below, \(\langle \phi , \varrho \rangle =\varrho (\phi )\).

  4. Recall that \(\tilde{\lambda }_q = \exp (\tfrac{1}{2}\varepsilon ^2 q^2 u_0 ) \lambda _q.\)

References

  1. Caillol, J.M., Levesque, D.: Numerical simulations of homogeneous and inhomogeneous ionic systems: an efficient alternative to the Ewald method. J. Chem. Phys. 94(1), 597–607 (1991). https://doi.org/10.1063/1.460326

    Article  ADS  Google Scholar 

  2. Fochler, O., Vogel, S., Bleicher, M., Greiner, C., Koch-Steinheimer, P., Xu, Z.: Canonical strangeness suppression in microscopic transport models. Phys. Rev. C 74(3), 034902 (2006). https://doi.org/10.1103/PhysRevC.74.034902

    Article  ADS  Google Scholar 

  3. Fontaine, J.R., Martin, P.A.: Equilibrium equations and symmetries of classical Coulomb systems. J. Stat. Phys. 36(1–2), 163–179 (1984). https://doi.org/10.1007/BF01015731

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Fröhlich, J.: Some frontiers in constructive quantum field theory and equilibrium statistical mechanics. In: Dell’Antonio, G., Doplicher, S., Jona-Lasinio, G. (eds.) Mathematical Problems in Theoretical Physics. Lecture Notes in Physics, vol. 80, pp. 37–58. Springer, Berlin (1978). https://doi.org/10.1007/3-540-08853-9_4

    Chapter  Google Scholar 

  5. Fröhlich, J., Spencer, T.: On the statistical mechanics of classical Coulomb and dipole gases. J. Stat. Phys. 24(4), 617–701 (1981). https://doi.org/10.1007/BF01011379

    Article  ADS  MathSciNet  Google Scholar 

  6. Kennedy, T.: A lower bound on the partition function for a classical charge symmetric system. J. Stat. Phys. 28(4), 633–638 (1982). https://doi.org/10.1007/BF01011872

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey P. Thompson.

Additional information

Communicated by Eric A. Carlen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The Gaussian approximation \(\varXi _2\) can be computed explicitly. As an illustration, we give in this Appendix an explicit formula for the case of a Coulomb system in a torus

$$\begin{aligned} \varLambda =X= {\mathbb {R}}^d/a{\mathbb {Z}}^d. \end{aligned}$$

The interaction potential is assumed to be given by (1.2); that is,

$$\begin{aligned} u(x,y) = \frac{1}{|\varLambda |}\sum _{p \in \varLambda ^* \setminus \{0\}} \hat{u}_p \, {\mathrm {e}}^{\mathrm{i} p \cdot (x-y)}, \end{aligned}$$

where \(|\varLambda | = a^d\), \(\varLambda ^*=2 \pi a^{-1} {\mathbb {Z}}^d\), and

$$\begin{aligned} \hat{u}_p = \frac{{\mathrm {e}}^{-t |p |^2}}{|p |^2}. \end{aligned}$$

The parameter \(t > 0\) is an ultraviolet cutoff. (For \(d=1\) we may let \(t = 0\).) We assume the term \(u_0=u_0(t)\) introduced in (2.2) is chosen so that the energy

$$\begin{aligned} E_0 = \tfrac{1}{2}\lim _{t\rightarrow 0} \Bigg [{ u_0(t) - \frac{1}{|\varLambda |}\sum _{p\in \varLambda ^*\setminus \{0\}} \frac{{\mathrm {e}}^{-t|p |^2}}{|p |^2} } \Bigg ] \end{aligned}$$

is finite.

For \(\phi \in \varPhi /\varTheta \) and \(p\in \varLambda ^*\setminus \{0\}\), let

$$\begin{aligned} \hat{\phi }_p = \int _\varLambda \langle \phi , \delta '_x \rangle \, {\mathrm {e}}^{-\mathrm{i} p \cdot x} \, v({\mathrm {d}}x). \end{aligned}$$

(Recall that \(\pi ^*(\delta '_x) = \delta _x - \delta _{x_0}\), and note that \(\hat{\phi }_p\) is independent of the choice of basepoint \(x_0\).) The Fourier components \(\hat{\varrho }_p\) of a charge distribution \(\varrho \in (\varPhi /\varTheta )^*\) satisfy

$$\begin{aligned} \frac{1}{|\varLambda |} \sum _{p \in \varLambda ^*\setminus \{0\}} \hat{\phi }_p \,\overline{\hat{\varrho }_p} = \langle \phi , \varrho \rangle \end{aligned}$$

for any \(\phi \in \varPhi /\varTheta \). Explicitly, if \(\varrho =\sum _{j=1}^n c_j \delta '_{x_j}\) with \(\sum _{j=1}^n c_j = 0\), then

$$\begin{aligned} \hat{\varrho }_p = \sum _{j=1}^n c_j {\mathrm {e}}^{-\mathrm{i}p \cdot x_j}. \end{aligned}$$

We have

$$\begin{aligned} V_2(\phi ) = \tfrac{1}{2} \xi _0^{-2} |\varLambda |^{-1} \sum _{p\in \varLambda ^*\setminus \{0\}} |\hat{\phi }_p |^2 - \tfrac{1}{2} \xi _0^{-2} u_0 |\varLambda | \end{aligned}$$

and

$$\begin{aligned} \int {\mathrm {e}}^{\mathrm{i}\langle \phi , \varrho \rangle } \, \gamma ({\mathrm {d}}\phi ) = \exp \Bigg [{- \tfrac{1}{2}|\varLambda |^{-1} \sum _{p \in \varLambda ^*\setminus \{0\}} \hat{u}_p |\hat{\varrho }_p |^2 }\Bigg ]. \end{aligned}$$

A standard calculation gives

$$\begin{aligned} \varXi _2&= \varXi _0 \int {\mathrm {e}}^{-V_2(\phi )} \, \gamma ({\mathrm {d}}\phi ) \\&= \varXi _0 \exp \Bigg [ \tfrac{1}{2} \xi _0^{-2} u_0 |\varLambda | - \tfrac{1}{2} \sum _{p \in \varLambda ^*\setminus \{0\}} \log \left( 1 + \xi _0^{-2}\hat{u}_p \right) \Bigg ]. \end{aligned}$$

In dimensions \(d < 4\), we can remove the ultraviolet cutoff in \(\varXi _2\) by letting t go to zero. The result is the Debye–Hückel approximation

$$\begin{aligned} \lim _{t \rightarrow 0} \varXi _2 = \varXi _0 \exp \Bigg \{{ \xi _0^{-2} E_0 |\varLambda |- \tfrac{1}{2} \sum _{p \in \varLambda ^*\setminus \{0\}} \left[ \log \left( 1 + \xi _0^{-2}|p |^{-2} \right) -\xi _0^{-2}|p |^{-2}\right] }\Bigg \}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thompson, J.P., Sanchez, I.C. A Lower Bound on the Partition Function for a Strictly Neutral Charge-Symmetric System. J Stat Phys 177, 1207–1215 (2019). https://doi.org/10.1007/s10955-019-02416-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-019-02416-y

Keywords

Navigation