Skip to main content
Log in

Gaussian Fluctuation for Superdiffusive Elephant Random Walks

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Elephant random walk is a kind of one-dimensional discrete-time random walk with infinite memory: For each step, with probability \(\alpha \) the walker adopts one of his/her previous steps uniformly chosen at random, and otherwise he/she performs like a simple random walk (possibly with bias). It admits a phase transition from diffusive to superdiffusive behavior at the critical value \(\alpha _c=1/2\). For \(\alpha \in (\alpha _c, 1)\), there is a scaling factor \(a_n\) of order \(n^{\alpha }\) such that the position \(S_n\) of the walker at time n scaled by \(a_n\) converges to a nondegenerate random variable \({\widehat{W}}\), whose distribution is not Gaussian. Our main result shows that the fluctuation of \(S_n\) around \({\widehat{W}} \cdot a_n\) is still Gaussian. We also give a description of a phase transition induced by bias decaying polynomially in time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baur, E., Bertoin, J.: Elephant random walks and their connection to Pólya-type urns. Phys. Rev. E 94, 052134 (2016)

    Article  ADS  Google Scholar 

  2. Bercu, B.: A martingale approach for the elephant random walk. J. Phys. A 51, 015201 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  3. Bercu, B., Chabanol, M.-L., Ruch, J.-J.: Hypergeometric identities arising from the elephant random walk. J. Math. Anal. Appl. 480, 123360 (2019)

    Article  MathSciNet  Google Scholar 

  4. Bercu, B., Laulin, L.: On the multi-dimensional elephant random walk. J. Stat. Phys. 175, 1146–1163 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  5. Bertoin, J.: Noise reinforcement for Lévy processes. (2018). arXiv:1810.08364

  6. Businger, S.: The shark random swim (Lévy flight with memory). J. Stat. Phys. 172, 701–717 (2018). (See also arXiv:1710.05671v3)

    Article  ADS  MathSciNet  Google Scholar 

  7. Coletti, C.F., Gava, R.J., Schütz, G.M.: Central limit theorem for the elephant random walk. J. Math. Phys. 58, 053303 (2017a)

    Article  ADS  MathSciNet  Google Scholar 

  8. Coletti, C.F., Gava, R.J., Schütz, G.M.: A strong invariance principle for the elephant random walk. J. Stat. Mech. 123207 (2017b)

  9. Cressoni, J.C., da Silva, M.A.A., Viswanathan, G.M.: Amnestically induced persistence in random walks. Phys. Rev. Lett. 98, 070603 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  10. da Silva, M.A.A., Cressoni, J.C., Schütz, G., Viswanathan, G.M., Trimper, S.: Non-Gaussian propagator for elephant random walks. Phys. Rev. E 88, 022115 (2013)

    Article  ADS  Google Scholar 

  11. Drezner, Z., Farnum, N.: A generalized binomial distribution. Commun. Stat. Theory Methods 22, 3051–3063 (1993)

    Article  MathSciNet  Google Scholar 

  12. Gut, A., Stadtmüller, U.: Variations of the elephant random walk. (2018). arXiv:1812.01915

  13. Gut, A., Stadtmüller, U.: Elephant random walks with delays. (2019). arXiv:1906.04930

  14. Heyde, C.C.: On central limit and iterated logarithm supplements to the martingale convergence theorem. J. Appl. Probab. 14, 758–775 (1977)

    Article  MathSciNet  Google Scholar 

  15. Hall, P., Heyde, C.C.: Martingale Limit Theory and Its Application. Probability and Mathematical Statistics. Academic Press, London (1980)

    MATH  Google Scholar 

  16. Heyde, C.C.: Asymptotics and criticality for a correlated Bernoulli process. Aust. N. Z. J. Stat. 46, 53–57 (2004)

    Article  MathSciNet  Google Scholar 

  17. James, B., James, K., Qi, Y.: Limit theorems for correlated Bernoulli random variables. Stat. Probab. Lett. 78, 2339–2345 (2008)

    Article  MathSciNet  Google Scholar 

  18. Knopp, K.: Infinite Sequences and Series. Dover Publications, New York (1956)

    MATH  Google Scholar 

  19. Kürsten, R.: Random recursive trees and the elephant random walk. Phys. Rev. E 93, 032111 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  20. Schütz, G.M., Trimper, S.: Elephants can always remember: Exact long-range memory effects in a non-Markovian random walk. Phys. Rev. E 70, 045101 (2004)

    Article  ADS  Google Scholar 

  21. Wu, L., Qi, Y., Yang, J.: Asymptotics for dependent Bernoulli random variables. Stat. Probab. Lett. 82, 455–463 (2012)

    Article  MathSciNet  Google Scholar 

  22. Zhang, Y., Zhang, L.-X.: On the almost sure invariance principle for dependent Bernoulli random variables. Stat. Probab. Lett. 107, 264–271 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masato Takei.

Additional information

Communicated by Irene Giardina.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

N.K. is partially supported by JSPS Grant-in-Aid for Young Scientists (B) No. 16K17620. M.T. is partially supported by JSPS Grant-in-Aid for Young Scientists (B) No. 16K21039, and JSPS Grant-in-Aid for Scientific Research (C) No. 19K03514.

Appendix

Appendix

1.1 Lemmas from Calculus

Lemma A1

(Schütz and Trimper [20], (12) and (13)) The general solution \(\{x_n\}\) to the recursion

$$\begin{aligned} {\left\{ \begin{array}{ll} x_1=f_0, \\ x_{n+1} = f_n+g_n \cdot x_n &{}[n=1,2,\cdots ] \\ \end{array}\right. } \end{aligned}$$

is given by

$$\begin{aligned} x_n = \sum _{\ell =0}^{n-1} f_\ell \cdot \prod _{k=\ell +1}^{n-1} g_k. \end{aligned}$$

Lemma A2

(see e.g. Knopp [18], p.34) If a real sequence \(\{a_n\}\) and a positive sequence \(\{b_n\}\) satisfy

$$\begin{aligned} \lim _{n\rightarrow \infty } \dfrac{a_n}{b_n} = L \in {\mathbb {R}} \cup \{ \pm \infty \},\quad \text{ and }\quad \sum _{n=1}^{\infty } b_n = +\infty , \end{aligned}$$

then

$$\begin{aligned} \lim _{n\rightarrow \infty } \dfrac{\sum _{k=1}^n a_k}{\sum _{k=1}^n b_k} = L. \end{aligned}$$

Lemma A3

Consider a positive real sequence \(\{a_n\}\) which monotonically diverges to \(+\infty \), and another real sequence \(\{b_n\}\).

  1. (i)

    (Kronecker’s lemma) If \(\displaystyle \sum _{k=1}^{\infty } \dfrac{b_k}{a_k}\) converges, then \(\displaystyle \lim _{n \rightarrow \infty } \dfrac{1}{a_n}\sum _{k=1}^n b_k =0\).

  2. (ii)

    (Heyde [14], Lemma 1 (ii)) If \(\displaystyle \sum _{k=1}^{\infty } a_k b_k\) converges, then\(\displaystyle \lim _{n \rightarrow \infty } a_n\sum _{k=n}^{\infty } b_k =0\).

1.2 Martingale Limit Theorems

Theorem A1

(Hall and Heyde [15], Theorem 2.15) Suppose that \(\{M_n\}\) is a square-integrable martingale with mean 0. Let \(d_k=M_k-M_{k-1}\) for \(k=1,2,\cdots \), where \(M_0=0\). On the event

$$\begin{aligned} \left\{ \sum _{k=1}^{\infty } E[(d_k)^2 \mid {\mathcal {F}}_{k-1}] <+\infty \right\} , \end{aligned}$$

\(\{M_n\}\) converges a.s..

The following theorem is a special case of Heyde [14], Theorem 1 (b).

Theorem A2

Suppose that \(\{M_n\}\) is a square-integrable martingale with mean 0. Let \(d_k=M_k-M_{k-1}\) for \(k=1,2,\cdots \), where \(M_0=0\). If

$$\begin{aligned} \displaystyle \sum _{k=1}^{\infty } E[(d_k)^2] < +\infty \end{aligned}$$

holds in addition, then we have the following: Let \(\displaystyle s_n^2 := \sum _{k=n}^{\infty } E[ (d_k)^2]\).

  1. (i)

    The limit \(M_{\infty }:=\sum _{k=1}^{\infty } d_k\) exists a.s., and \(M_n {\mathop {\rightarrow }\limits ^{L^2}} M_{\infty }\).

  2. (ii)

    Assume that

    1. a)

      \(\displaystyle \dfrac{1}{s_n^2} \sum _{k=n}^{\infty } (d_k)^2 \rightarrow 1\) as \(n \rightarrow \infty \) in probability, and

    2. b)

      \(\displaystyle \lim _{n \rightarrow \infty } \dfrac{1}{s_n^2}E\left[ \sup _{k \ge n} (d_k)^2\right] =0\).

    Then we have

    $$\begin{aligned} \dfrac{M_{\infty } - M_n}{s_{n+1}} = \dfrac{ \sum _{k=n+1}^{\infty } d_k}{s_{n+1}}{\mathop {\rightarrow }\limits ^{\text {d}}} N(0,1). \end{aligned}$$
  3. (iii)

    Assume that the following three conditions hold:

    1. a’)

      \(\displaystyle \dfrac{1}{s_n^2} \sum _{k=n}^{\infty } (d_k)^2 \rightarrow 1\) as \(n \rightarrow \infty \) a.s.,

    2. c)

      \(\displaystyle \sum _{k=1}^{\infty } \dfrac{1}{s_k} E[ |d_k| : |d_k| > \varepsilon s_k] < +\infty \) for any \(\varepsilon > 0\), and

    3. d)

      \(\displaystyle \sum _{k=1}^{\infty } \dfrac{1}{s_k^4} E[ (d_k)^4 : |d_k| \le \delta s_k] < +\infty \) for some \(\delta > 0\).

    Then \(\displaystyle \limsup _{n \rightarrow \infty } \pm \dfrac{M_{\infty } - M_n}{{\widehat{\phi }}(s_{n+1}^2)} =1\) a.s., where \({\widehat{\phi }}(t):=\sqrt{2t\log |\log t|}\).

Remark A1

A sufficient condition for b) in Theorem A2 is that

$$\begin{aligned} \displaystyle \lim _{n \rightarrow \infty }\dfrac{1}{s_n^2} \sum _{k=n}^{\infty } E[ (d_k)^2 : |d_k| > \varepsilon s_n] =0 \end{aligned}$$

for any \(\varepsilon > 0\). (See the proof of Corollary 1 in Heyde [14]).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kubota, N., Takei, M. Gaussian Fluctuation for Superdiffusive Elephant Random Walks. J Stat Phys 177, 1157–1171 (2019). https://doi.org/10.1007/s10955-019-02414-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-019-02414-0

Keywords

Navigation