Skip to main content
Log in

A Detailed Fluctuation Theorem for Heat Fluxes in Harmonic Networks Out of Thermal Equilibrium

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We continue the investigation, started in Jakšić et al. in (J. Stat. Phys. 166:926–1015, 2017), of a network of harmonic oscillators driven out of thermal equilibrium by heat reservoirs. We study the statistics of the fluctuations of the heat fluxes flowing between the network and the reservoirs in the nonequilibrium steady state and in the large time limit. We prove a large deviation principle for these fluctuations and derive the fluctuation relation satisfied by the associated rate function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. see [4], and also, in view of the now well understood connection with the thermodynamic formalism, [49, Proposition 5.3.2, Equ. (3.9)].

  2. The integral there is to be taken in Itô’s sense.

  3. \(X_\xi \) is maximal whenever \(X\le X_\xi \) for all self-adjoint X such that \(\mathscr {R}_\xi (X)=0\).

  4. Here, we used the fact that the steady state covariance M satisfies \(M^{-1}=\theta X_{\vartheta ^{-1}}\theta \).

  5. The lineality space of a convex set \(\mathscr {C}\subset \mathbb {R}^n\) is the set of vectors \(y\in \mathbb {R}^n\) such that \(x+\lambda y\in \mathscr {C}\) for all \(x\in \mathscr {C}\) and all \(\lambda \in \mathbb {R}\), see [47]

  6. Recall that M, given in (2.8), is the covariance of the invariant measure \(\mu \).

  7. In Figures 6 and 7 the set \(\partial \mathscr {S}\) is mapped to the closed unit disk by first mapping \(\partial \mathscr {S}\) to the unit sphere and then mapping the point with spherical coordinates \((\varphi ,\theta )\in [0,2\pi ]\times [0,\pi ]\) on this sphere to the point \(\frac{\theta }{\pi }(\cos \varphi ,\sin \varphi )\) of the plane.

References

  1. Atilgan, A.R., Durrell, S.R., Jernigan, R.L., Demirel, M.C., Keskin, O., Bahar, I.: Anisotropy of fluctuation dynamics of proteins with an elastic network model. Biophys. J. 80, 505–515 (2001)

    Google Scholar 

  2. Andrieux, D., Gaspard, P., Monnai, T., Tasaki, S.: The fluctuation theorem for currents in open quantum systems. New J. Phys. 11, 043014 (2009)

    ADS  Google Scholar 

  3. Baiesi, M., Jacobs, T., Maes, C., Skantzos, N.S.: Fluctuation symmetries for work and heat. Phys. Rev. E 74, 021111 (2006)

    ADS  Google Scholar 

  4. Bochkov, G.N., Kuzovlev, YuE: General theory of thermal fluctuations in nonlinear systems. Sov. Phys. JETP 45, 125–130 (1977)

    ADS  Google Scholar 

  5. Bodineau, T., Lefevere, R.: Large deviations of lattice Hamiltonian dynamics coupled to stochastic thermostats. J. Stat. Phys. 133, 1–27 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  6. Bonetto, F., Gallavotti, G., Giuliani, A., Zamponi, F.: Chaotic hypothesis, fluctuation theorem and singularities. J. Stat. Phys. 123, 39–54 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  7. Benoist, T., Jakšić, V., Pillet, C.-A.: Energy statistics in open harmonic networks. J. Stat. Phys. 168, 1016–1030 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  8. Benoist, T., Panati, A., Pautrat, Y.: Heat conservation and fluctuations for open quantum systems in the Two-Time Measurement picture. Preprint arXiv:1810.09999

  9. Cuneo, N., Eckmann, J.-P.: Controlling general polynomial networks. Commun. Math. Phys. 328, 1255–1274 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  10. Cuneo, N., Eckmann, J.-P., Hairer, M., Rey-Bellet, L.: Non-equilibrium steady states for networks of oscillators. Electronic J. Probab. 23, 1–28 (2018)

    MathSciNet  MATH  Google Scholar 

  11. Chetrite, R., Gawȩdzki, K.: Fluctuation relations for diffusion processes. Commun. Math. Phys. 282, 469–518 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  12. Crooks, G.E.: Nonequilibrium measurements of free energy differences for microscopically reversible Markovian systems. J. Stat. Phys. 90, 1481–1487 (1998)

    ADS  MathSciNet  MATH  Google Scholar 

  13. Cohen, E.G.D., van Zon, R.: Extended heat-fluctuation theorems for a system with deterministic and stochastic forces. Phys. Rev. E 69, 056121 (2004)

    ADS  Google Scholar 

  14. den Hollander, F.: Large Deviations. Fields Institute Monographs. AMS, Providence (2000)

    Google Scholar 

  15. Dembo, A., Zeitouni, O.: Large Deviations. Techniques and Applications. Springer, Berlin (1998)

    MATH  Google Scholar 

  16. Douarche, F., Joubaud, S., Garnier, N.B., Petrosyan, A., Ciliberto, S.: Work fluctuation theorems for harmonic oscillators. Phys. Rev. Lett. 97, 140603 (2006)

    ADS  Google Scholar 

  17. Evans, D.J., Cohen, E.G.D., Morriss, G.P.: Probability of second law violation in shearing steady flows. Phys. Rev. Lett. 71, 2401–2404 (1993)

    ADS  MATH  Google Scholar 

  18. Eckmann, J.-P., Pillet, C.-A., Rey-Bellet, L.: Non-equilibrium statistical mechanics of anharmonic chains coupled to two heat baths at different temperatures. Commun. Math. Phys. 201, 657–697 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  19. Evans, D.J., Searles, D.J.: Equilibrium microstates which generate second law violating steady states. Phys Rev. E 50, 1645–1648 (1994)

    ADS  Google Scholar 

  20. Eckmann, J.-P., Zabey, E.: Strange heat flux in (an)harmonic networks. J. Stat. Phys. 114, 515–523 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  21. Farago, J.: Injected power fluctuations in Langevin equation. J. Stat. Phys. 107, 781–803 (2002)

    ADS  MathSciNet  MATH  Google Scholar 

  22. Gallavotti, G.: Extension of Onsager’s reciprocity to large fields and the chaotic hypothesis. Phys. Rev. Lett. 77, 4334–4337 (1996)

    ADS  MathSciNet  MATH  Google Scholar 

  23. Gallavotti, G.: New methods in nonequilibrium gases and fluids. Open Syst. Inf. Dyn. 6, 101–136 (1999)

    MathSciNet  MATH  Google Scholar 

  24. Gallavotti, G.: Statistical Mechanics. A Short Treatise. Springer, Berlin (2000)

    MATH  Google Scholar 

  25. Gallavotti, G., Cohen, E.G.D.: Dynamical ensembles in nonequilibrium statistical mechanics. Phys. Rev. Lett. 74, 2694–2697 (1995)

    ADS  Google Scholar 

  26. Gallavotti, G., Cohen, E.G.D.: Dynamical ensembles in stationary states. J. Stat. Phys. 80, 931–970 (1995)

    ADS  MathSciNet  MATH  Google Scholar 

  27. Granger, L., Mehlis, J., Roldán, É., Ciliberto, S., Kantz, H.: Fluctuation theorem between non-equilibrium states in an RC circuit. New J. Phys. 17, 065005 (2015)

    ADS  Google Scholar 

  28. Haliloglu, T.B., Erman, B.: Gaussian dynamics of folded proteins. Phys. Rev. Lett. 79, 3090–3093 (1997)

    ADS  Google Scholar 

  29. Jarzynski, C.: A nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78, 2690–2693 (1997)

    ADS  Google Scholar 

  30. Jakšić, V., Nersesyan, V., Pillet, C.-A., Shirikyan, A.: Large deviations from a stationary measure for a class of dissipative PDEs with random kicks Commun. Pure Appl. Math. 68, 2108–43 (2015)

    MathSciNet  MATH  Google Scholar 

  31. Jakšić, V., Nersesyan, V., Pillet, C.-A., Shirikyan, A.: Large deviations and mixing for dissipative PDEs with unbounded random kicks. Nonlinearity 31, 540–596 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  32. Jakšić, V., Nersesyan, V., Pillet, C.-A., Shirikyan, A.: Large deviations and Gallavotti-Cohen principle for dissipative PDEs with rough noise. Commun. Math. Phys. 336, 131–170 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  33. Jakšić, V., Nersesyan, V., Pillet, C.-A., Shirikyan, A.: Large deviations and entropy production in viscous fluid flows. Preprint arXiv:1902.03278

  34. Jakšić, V., Ogata, Y., Pautrat, Y., Pillet, C.-A.: Entropic fluctuations in quantum statistical mechanics-an introduction. In: Fröhlich, J., Salmhofer, M., Mastropietro, V., De Roeck, W., Cugliandolo, L.F. (eds.) Quantum Theory from Small to Large Scales. Oxford University Press, Oxford (2012)

    MATH  Google Scholar 

  35. Jop, P., Petrosyan, A., Ciliberto, S.: Work and dissipation fluctuations near the stochastic resonance of a colloidal particle. EPL 81, 50005 (2008)

    ADS  Google Scholar 

  36. Jakšić, V., Pillet, C.-A., Rey-Bellet, L.: Entropic fluctuations in statistical mechanics I. Classical dynamical systems. Nonlinearity 24, 699–763 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  37. Jakšić, V., Pillet, C.-A., Shirikyan, A.: Entropic fluctuations in thermally driven harmonic networks. J. Stat. Phys. 166, 926–1015 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  38. Kundu, A., Sabhapandit, S., Dhar, A.: Large deviations of heat flow in harmonic chains. J. Stat. Mech. 2011, P03007 (2011)

    Google Scholar 

  39. Lancaster, P., Rodman, L.: The Algebraic Riccati Equation. Clarendon Press, Oxford (1995)

    MATH  Google Scholar 

  40. Lebowitz, J.L., Spohn, H.: A Gallavotti-Cohen-type symmetry in the large deviation functional for stochastic dynamics. J. Stat. Phys. 95, 333–365 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  41. Maes, C.: The fluctuation theorem as a Gibbs property. J. Stat. Phys. 95, 367–392 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  42. Maes, C., Netočný, K., Verschuere, M.: Heat conduction networks. J. Stat. Phys. 111, 1219–1244 (2003)

    MathSciNet  MATH  Google Scholar 

  43. Nersesyan, V.: Large deviations for the Navier-Stokes equations driven by a white-in-time noise. To appear in Ann. H. Lebesgue (2019)

  44. Nickelsen, D., Engel, A.: Asymptotics of work distributions: the pre-exponential factor. Eur. Phys. J. B 82, 207–218 (2011)

    ADS  Google Scholar 

  45. Rákos, A., Harris, R.J.: On the range of validity of the fluctuation theorem for stochastic Markovian dynamics. J. Stat. Mech. 2011, P05005 (2008)

    Google Scholar 

  46. Rondoni, L., Mejía-Monasterio, C.: Fluctuations in non-equlibrium statistical mechanics: models, mathematical theory, physical mechanisms. Nonlinearity 20, 1–37 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  47. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1972)

    Google Scholar 

  48. Rey-Bellet, L., Thomas, L.E.: Fluctuations of the entropy production in anharmonic chains. Ann. Henri Poincaré 3, 483–502 (2002)

    ADS  MathSciNet  MATH  Google Scholar 

  49. Ruelle, D.: Statistical Mechanics: Rigorous Results (3rd edition). Mathematical Physics Monograph Series. Benjamin, Reading, MA (1977)

  50. Ruelle, D.: Smooth dynamics and new theoretical ideas in nonequilibrium statistical mechanics. J. Stat. Phys. 95, 393–468 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  51. Seifert, U.: Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys. 75, 126001 (2012)

    ADS  Google Scholar 

  52. van Zon, R., Ciliberto, S., Cohen, E.G.D.: Power and heat fluctuation theorems for electric circuits. Phys. Rev. Lett. 92, 130601 (2004)

    Google Scholar 

  53. Visco, P.: Work fluctuations for a Brownian particle between two thermostats. J. Stat. Mech. 2006, 6006 (2006)

    Google Scholar 

  54. Watson, G.N.: A Treatise on the Theory of Bessel Functions, 2nd edn. Cambridge University Press, Cambridge (1966)

    MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by the Agence Nationale de la Recherche (ANR) through the grant NONSTOPS (ANR-17-CE40-0006) and the CNRS collaboration grant Fluctuation theorems in stochastic systems. The work of C.-A.P. has been carried out in the framework of the Labex Archimède (ANR-11-LABX-0033) and of the A*MIDEX project (ANR-11-IDEX-0001-02), funded by the “Investissements d’Avenir” French Government program managed by the ANR. Parts of this work were performed during the visits of M.D. and M.H. at the University of Toulon and of C.-A.P. at the University of Sfax. We thank the CPT, the University of Toulon and the Mathematics Department of Sfax for their hospitality and support. M.H. and C.-A.P. are also grateful to the Centre de Recherches Mathématiques de l’Université de Montréal for its hospitality and the Simons foundation and CNRS for their support during their stay in Montréal in the fall 2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claude-Alain Pillet.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Damak, M., Hammami, M. & Pillet, CA. A Detailed Fluctuation Theorem for Heat Fluxes in Harmonic Networks Out of Thermal Equilibrium. J Stat Phys 180, 263–296 (2020). https://doi.org/10.1007/s10955-019-02398-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-019-02398-x

Keywords

Navigation