Skip to main content
Log in

Diffusion Profile for Random Band Matrices: A Short Proof

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Let H be a Hermitian random matrix whose entries \(H_{xy}\) are independent, centred random variables with variances \(S_{xy} = {\mathbb {E}}|H_{xy}|^2\), where \(x, y \in ({\mathbb {Z}}/L{\mathbb {Z}})^d\) and \(d \geqslant 1\). The variance \(S_{xy}\) is negligible if \(|x - y|\) is bigger than the band width W. For \( d = 1\) we prove that if \(L \ll W^{1 + \frac{2}{7}}\) then the eigenvectors of H are delocalized and that an averaged version of \(|G_{xy}(z)|^2\) exhibits a diffusive behaviour, where \( G(z) = (H-z)^{-1}\) is the resolvent of H. This improves the previous assumption \(L \ll W^{1 + \frac{1}{4}}\) of Erdős et al. (Commun Math Phys 323:367–416, 2013). In higher dimensions \(d \geqslant 2\), we obtain similar results that improve the corresponding ones from Erdős et al. (Commun Math Phys 323:367–416, 2013). Our results hold for general variance profiles \(S_{xy}\) and distributions of the entries \(H_{xy}\). The proof is considerably simpler and shorter than that of Erdős et al. (Ann Henri Poincaré 14:1837–1925, 2013), Erdős et al. (Commun Math Phys 323:367–416, 2013). It relies on a detailed Fourier space analysis combined with isotropic estimates for the fluctuating error terms. It is completely self-contained and avoids the intricate fluctuation averaging machinery from Erdős et al. (Ann Henri Poincaré 14:1837–1925, 2013).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, P.W.: Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492 (1958)

    Article  ADS  Google Scholar 

  2. Bourgade, P., Yang, F., Yau, H.-T., Yin, J.: Random band matrices in the delocalized phase, II: Generalized resolvent estimates. J. Stat. Phys. 174, 1189–1221 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  3. Bourgade, P., Yau, H.-T., Yin, J.: Random band matrices in the delocalized phase, I: Quantum unique ergodicity and universality. Preprint arXiv:1807.01559

  4. Boutet de Monvel, A., Khorunzhy, A.: Asymptotic distribution of smoothed eigenvalue density. II. Wigner random matrices. Random Oper. Stoch. Equ. 7, 149–168 (1999)

    Article  MathSciNet  Google Scholar 

  5. Erdős, L., Knowles, A.: Quantum diffusion and delocalization for band matrices with general distribution. Ann. H. Poincaré 12, 1227–1319 (2011)

    Article  MathSciNet  Google Scholar 

  6. Erdős, L., Knowles, A.: Quantum diffusion and eigenfunction delocalization in a random band matrix model. Commun. Math. Phys. 303, 509–554 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  7. Erdős, L., Knowles, A., Yau, H.-T.: Averaging fluctuations in resolvents of random band matrices. Ann. Henri Poincaré 14, 1837–1925 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  8. Erdős, L., Knowles, A., Yau, H.T., Yin, J.: The local semicircle law for a general class of random matrices. Electron. J. Prob. 18(59), 58 (2013)

    MathSciNet  MATH  Google Scholar 

  9. Erdős, L., Knowles, A., Yau, H.-T., Yin, J.: Delocalization and diffusion profile for random band matrices. Commun. Math. Phys. 323, 367–416 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  10. Erdős, L., Yau, H.-T., Yin, J.: Bulk universality for generalized Wigner matrices. J. Prob. Theory Relat. Fields 154(1), 341–407 (2012)

    Article  MathSciNet  Google Scholar 

  11. Fyodorov, Y.V., Mirlin, A.D.: Scaling properties of localization in random band matrices: a \(\sigma \)-model approach. Phys. Rev. Lett. 67, 2405–2409 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  12. He, Y., Knowles, A., Rosenthal, R.: Isotropic self-consistent equations for mean-field random matrices. Prob. Theory Relat. Fields 171(1–2), 203–249 (2018)

    Article  MathSciNet  Google Scholar 

  13. He, Y., Knowles, A.: Mesoscopic eigenvalue statistics of Wigner matrices. Ann. Appl. Prob. 27, 1510–1550 (2017)

    Article  MathSciNet  Google Scholar 

  14. Khorunzhy, A.M., Khoruzhenko, B.A., Pastur, L.A.: Asymptotic properties of large random matrices with independent entries. J. Math. Phys. 37, 5033–5060 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  15. Schenker, J.: Eigenvector localization for random band matrices with power law band width. Commun. Math. Phys. 290, 1065–1097 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  16. Spencer, T.: SUSY statistical mechanics and random band matrices. Springer, Berlin (2012). Lecture notes

    Book  Google Scholar 

  17. Spencer, T.: Random banded and sparse matrices. In: Akemann, G., Baik, J., Di Francesco, P. (eds.) Oxford Handbook of Random Matrix Theory. Oxford University Press, Oxford (2011)

    Google Scholar 

  18. Wigner, E.P.: Characteristic vectors of bordered matrices with infinite dimensions. Ann. Math. 62, 548–564 (1955)

    Article  MathSciNet  Google Scholar 

  19. Yang, F., Yin, J.: Random band matrices in the delocalized phase, III: Averaging fluctuations. Preprint arXiv:1807.02447

Download references

Acknowledgements

We thank Antti Knowles, who motivated us to study this problem, for useful discussions and suggestions on the topic. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 715539_RandMat) and the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukun He.

Additional information

Communicated by Alessandro Giuliani.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Proof of Lemma 5.2

Proof of Lemma 5.2

We recall that Lemma 5.2 basically coincides with Corollary 5.4 in [9]. Here we give a proof which does not rely on the averaging fluctuations estimate in [7].

We will assume that H is Hermitian with Gaussian entries and such that \( {\mathbb {E}}H_{ij}^2 =0\), but the result holds also in the general complex case and the additional terms are treated as we saw in Sect. 8.

To get the desired bounds, we consider the expectation \( {\mathcal {F}}_{ab} := {\mathbb {E}}|F_{ab}|^{2p}\) where \(F_{ab}:=G_{ab} - \mathfrak m \, \delta _{ab} \) and p is an arbitrary strictly positive integer. The cumulant expansion yields

$$\begin{aligned} z {\mathcal {F}}_{ab}&= {\mathbb {E}}(zG_{ab}-z \mathfrak m \, \delta _{ab})F_{ab}^{p-1} \overline{F} \!\,_{ab}^{p} = {\mathbb {E}}\bigg (\sum _i H_{ai}G_{ib}-(1+z \mathfrak m) \, \delta _{ab}\bigg )F_{ab}^{p-1} \overline{F} \!\,_{ab}^{p} \\&= \mathfrak m^2 \delta _{ab}{\mathbb {E}}F_{ab}^{p-1} \overline{F} \!\,_{ab}^{p} - {\mathbb {E}}\sum _i S_{ai} \partial _{ia} G_{ib} F_{ab}^{p-1} \overline{F} \!\,_{ab}^{p} \\&= \mathfrak m^2 \delta _{ab} {\mathbb {E}}F_{ab}^{p-1} \overline{F} \!\,_{ab}^{p} - {\mathbb {E}}\sum _i S_{ai} G_{ii}G_{ab} F_{ab}^{p-1} \overline{F} \!\,_{ab}^{p} + {\mathbb {E}}\sum _i S_{ai} G_{ib} \partial _{ia}F_{ab}^{p-1} \overline{F} \!\,_{ab}^{p} \end{aligned}$$

where we used (2.10). Using the trivial identities \( G_{ii} = G_{ii} - \mathfrak m + \mathfrak m\) and \( G_{ab} = F_{ab} + \mathfrak m \delta _{ab}\), we get

$$\begin{aligned} (z + \mathfrak m) {\mathcal {F}}_{ab} =&- {\mathbb {E}}\sum _i S_{ai} (G_{ii}-\mathfrak m)F_{ab} F_{ab}^{p-1} \overline{F} \!\,_{ab}^{p} - \mathfrak m \delta _{ab} {\mathbb {E}}\sum _i S_{ai} (G_{ii}-\mathfrak m) F_{ab}^{p-1} \overline{F} \!\,_{ab}^{p} \\&+ {\mathbb {E}}\sum _i S_{ai} G_{ib} \partial _{ia}F_{ab}^{p-1} \overline{F} \!\,_{ab}^{p}\,. \end{aligned}$$

Using (6.5), (2.10) and that \(|F_{ab}| \leqslant \Lambda \prec \Psi \), one obtains

$$\begin{aligned} {\mathcal {F}}_{ab} = O_{\prec }(\Psi ^2 {\mathbb {E}}| F_{ab}|^{2p-1}) + O_{\prec }\bigg (\bigg \vert {\mathbb {E}}\sum _i S_{ai} G_{ib} \partial _{ia}F_{ab}^{p-1} \overline{F} \!\,_{ab}^{p} \bigg \vert \bigg ). \end{aligned}$$
(A.1)

Let us examine the second term on the right hand side of (A.1): we note that

$$\begin{aligned} \partial _{ia} F_{ab} = - G_{ai}G_{ab}, \ \ \ \partial _{ia} \overline{F} \!\,_{ab} = - \overline{G} \!\,_{aa} \overline{G} \!\,_{ib}, \end{aligned}$$

therefore (A.1) becomes

$$\begin{aligned} {\mathcal {F}}_{ab} =&\, O_{\prec }(\Psi ^2 {\mathbb {E}}| F_{ab}|^{2p-1}) + O_{\prec }\bigg (\bigg \vert {\mathbb {E}}\sum _i S_{ai} G_{ib} G_{ai}G_{ab}F_{ab}^{p-2} \overline{F} \!\,_{ab}^{p} \bigg \vert \bigg ) \nonumber \\&+ O_{\prec }\bigg (\bigg \vert {\mathbb {E}}\sum _i S_{ai} | G_{ib}|^2 \overline{G} \!\,_{aa} F_{ab}^{p-1} \overline{F} \!\,_{ab}^{p-1} \bigg \vert \bigg ). \end{aligned}$$
(A.2)

In the second term on the right hand side of (A.2), when \(a \ne b\) we can use (7.11) so that

$$\begin{aligned} {\mathcal {F}}_{ab} \prec \Psi ^2 {\mathbb {E}}| F_{ab}|^{2p-1} + {\mathbb {E}}(\Psi ^4 + T_{ab})| F_{ab}|^{2p-2}, \end{aligned}$$

while, when \(a = b\), the trivial inequality \(|xy| \leqslant (|x|^2 + |y|^2)/2\) yields

$$\begin{aligned} \sum _i S_{ai}G_{ib} G_{ai} \prec \sum _i S_{ai}(|G_{ai}|^2 + |G_{ia}|^2) = T_{aa} + T_{aa}', \end{aligned}$$

so that

$$\begin{aligned} {\mathcal {F}}_{aa} \prec \Psi ^2 {\mathbb {E}}| F_{aa}|^{2p-1} + {\mathbb {E}}(T_{aa} + T'_{aa})| F_{aa}|^{2p-2}. \end{aligned}$$

Thus, we finally have

$$\begin{aligned} {\mathcal {F}}_{ab}&\prec \Psi ^2 {\mathbb {E}}| F_{ab}|^{2p-1} + (\Psi ^4 + \Omega _{ab}){\mathbb {E}}| F_{ab}|^{2p-2} \prec (\Psi ^2 + \Omega _{ab}){\mathbb {E}}| F_{ab}|^{2p-1} \\&\quad + (\Psi ^4 + \Omega ^2_{ab}) {\mathbb {E}}| F_{ab}|^{2p-2}. \end{aligned}$$

Lemma 6.3 completes the proof.

Remark A.1

The estimate in Lemma 5.2 cannot be improved in the sense that \(F_{ab}\) will always be bounded at least by \(T_{ab} = \sum _i S_{ai}|G_{ib}|^2\) because \(T_{ab}\) appears explicitly in the third term on the right hand side of (A.2).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Marcozzi, M. Diffusion Profile for Random Band Matrices: A Short Proof. J Stat Phys 177, 666–716 (2019). https://doi.org/10.1007/s10955-019-02385-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-019-02385-2

Navigation