Skip to main content
Log in

Persistence Exponents via Perturbation Theory: AR(1)-Processes

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

For AR(1)-processes \(X_n=\rho X_{n-1}+\xi _n\), \(n\in \mathbb {N}\), where \(\rho \in \mathbb {R}\) and \((\xi _i)_{i\in \mathbb {N}}\) is an i.i.d. sequence of random variables, we study the so-called persistence probabilities \(\mathbb {P}(X_0\ge 0,\ldots , X_N\ge 0)\) for \(N\rightarrow \infty \). For a wide class of Markov processes a recent result (Aurzada et al. in Persistence exponents in Markov chains, arXiv preprint arXiv:1703.06447, 2017) shows that these probabilities decrease exponentially fast and that the rate of decay can be identified as an eigenvalue of some integral operator. We discuss a perturbation technique to determine a series expansion of the eigenvalue in the parameter \(\rho \) for normally distributed AR(1)-processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arendt, W., Batty, C.J., Hieber, M., Neubrander, F.: Vector-Valued Laplace Transforms and Cauchy Problems. Monographs in Mathematics, vol. 96. Springer, Basel (2011)

    Book  MATH  Google Scholar 

  2. Aurzada, F., Baumgarten, C.: Survival probabilities of weighted random walks. ALEA, Lat. Am. J. Probab. Math. Stat. 8, 235–258 (2011)

    MathSciNet  MATH  Google Scholar 

  3. Aurzada, F., Simon, T.: Persistence probabilities and exponents. In: Lévy matters. V, volume 2149 of Lecture Notes in Math., pp. 183–224. Springer, Cham (2015)

  4. Aurzada, F., Mukherjee, S., Zeitouni, O.: Persistence exponents in Markov chains. arXiv preprint arXiv:1703.06447 (2017)

  5. Baumgärtel, H.: Analytic Perturbation Theory for Matrices and Operators. Operator Theory: Advances and Applications, vol. 15. Birkhäuser, Basel (1985)

    MATH  Google Scholar 

  6. Baumgarten, C.: Survival probabilities of autoregressive processes. ESAIM 18, 145–170 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bray, A., Majumdar, S.N., Schehr, G.: Persistence and first-passage properties in non-equilibrium systems. Adv. Phys. 62(3), 225–361 (2013)

    Article  ADS  Google Scholar 

  8. Champagnat, N., Villemonais, D.: General criteria for the study of quasi-stationarity. arXiv preprint arXiv:1712.08092 (2017)

  9. Collet, P., Martínez, S., San Martín, J.: Quasi-Stationary Distributions: Markov Chains, Diffusions and Dynamical Systems. Springer, NewYork (2012)

    MATH  Google Scholar 

  10. Conway, J.B.: A Course in Functional Analysis. Graduate Texts in Mathematics, vol. 96. Springer, New York (2007)

    Book  Google Scholar 

  11. Dembo, A., Ding, J., Yan, J.: Persistence versus stability for auto-regressive processes. arXiv preprint arXiv:1906.00473 (2019)

  12. Hinrichs, G., Kolb, M., Wachtel, V.: Persistence of one-dimensional AR(1)-sequences. arXiv preprint arXiv:1801.04485 (2018)

  13. Janson, S.: Gaussian Hilbert Spaces, Cambridge Tracts in Mathematics, vol. 129. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  14. Jentzsch, R.: Über Integralgleichungen mit positivem Kern. J. für die reine Angew. Math. 141, 235–244 (1912)

    MathSciNet  MATH  Google Scholar 

  15. Kato, T.: Perturbation Theory for Linear Operators. Die Grundlehren der mathematischen Wissenschaften, vol. 132. Springer, New York (1966)

    Book  Google Scholar 

  16. Letac, G.: Isotropy and sphericity: some characterisations of the normal distribution. Ann. Stat. 9(2), 408–417 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  17. Majumdar, S.N., Dhar, D.: Persistence in a stationary time series. Phys. Rev. E 64, 046123 (2001)

    Article  ADS  Google Scholar 

  18. Majumdar, S.N., Bray, A.J., Ehrhardt, G.C.: Persistence of a continuous stochastic process with discrete-time sampling. Phys. Rev. E 64, 015101(R) (2001)

    Article  ADS  Google Scholar 

  19. Mehler, F.G.: Ueber die Entwicklung einer Function von beliebig vielen Variablen nach Laplaceschen Functionen höherer Ordnung. J. für die reine Angew Math. 66, 161–176 (1866)

    MathSciNet  Google Scholar 

  20. Méléard, S., Villemonais, D.: Quasi-stationary distributions and population processes. Probab. Surv. 9, 340–410 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Metzler, R., Oshanin, G., Redner, S.: First-Passage Phenomena and Their Applications. World Scientific, Singapore (2014)

    Book  MATH  Google Scholar 

  22. Redner, S.: A Guide to First-Passage Processes. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  23. Schaefer, H.H.: Banach Lattices and Positive Operators. Springer, Berlin (1974)

    Book  MATH  Google Scholar 

  24. Takesaki, M.: Theory of Operator Algebras I. Encyclopaedia of Mathematical Sciences, vol. 124. Springer, Berlin (2002)

    MATH  Google Scholar 

  25. Tweedie, R.L.: Quasi-stationary distributions for Markov chains on a general state space. J. Appl. Probab. 11(4), 726–741 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tweedie, R.L.: R-theory for Markov chains on a general state space I: solidarity properties and R-recurrent chains. Ann. Probab. 2(5), 840–864 (1974)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank two anonymous referees for their comments that helped to improve the exposition of this paper. This work was supported by the Deutsche Forschungsgemeinschaft (Grant AU370/4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marvin Kettner.

Additional information

Communicated by Abhishek Dhar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Collection of Auxiliary Results from Perturbation Theory

Collection of Auxiliary Results from Perturbation Theory

1.1 Overview

The aim of this appendix is to give the reader a simple and almost self-contained introduction to the relevant results of perturbation theory for this paper. The appendix is based on the classical work [15].

Let X be a Banach space with norm \(\Vert \cdot \Vert _{X}\). We write \(\mathcal {L}(X)\) for the set of bounded linear operators on X. For \(T\in \mathcal {L}(X)\) we will denote by \(\Vert T\Vert \) the operator norm of T, i.e. \(\Vert T\Vert :=\inf \{c\ge 0:\Vert Tx\Vert _{X}\le c\Vert x\Vert _{X} \text{ for } \text{ all } x\in X \}\). For a sequence \((T_n)_n\) of operators on X and an operator T on X, we write \(\lim _{n\rightarrow \infty } T_n=T\) if \(\lim _{n\rightarrow \infty }\Vert T_n-T\Vert = 0\). Moreover, let \(D\subseteq \mathbb {C}\) be a domain.

Definition

The operator-valued function \(\mathcal {T}:D\rightarrow \mathcal {L}(X)\) is called holomorphic if \(\lim _{h\rightarrow 0}\frac{\mathcal {T}(t+h)-\mathcal {T}(t)}{h}\) exists for all \(t\in D\).

Throughout the appendix, we will make use of properties of holomorphic operator-valued functions. Roughly speaking, the results of complex-valued functions can be generalized to operator-valued functions by considering scalar-valued functions defined via the dual space. For an overview of this topic we refer to [5, Sects. 3.3, 10.1] and [1, Appendix A].

A holomorphic operator-valued function on a disc can be expressed as a power series on this disc. Conversely, a convergent power series on a disc defines a holomorphic function. To simplify notation we continue to write \(T_t\) for \(\mathcal {T}(t)\). The key to prove Theorem 2 are the following results from perturbation theory.

Theorem 4

Assume that \(\mathcal {T}:D\rightarrow \mathcal {L}(X)\) is holomorphic. Let \(t_0\in D\) and \(\lambda _0\) be an isolated eigenvalue of \(T_{t_0}\) with algebraic multiplicity equal to one. Then there exists an open neighbourhood \(U\subseteq D\) of \(t_0\) and a holomorphic function \(\lambda :U\rightarrow \mathbb {C}\) such that \(\lambda _t\) is an eigenvalue of \(T_t\) for \(t\in U\).

In addition, there exists an open neighbourhood \(U'\subseteq D\) of \(t_0\) and a holomorphic function \(g:U'\rightarrow X\) such that \(g_t\) is an eigenvector of \(T_t\) with eigenvalue \(\lambda _t\) for \(t\in U'\cap U\).

Theorem 5

Under the conditions of Theorem 4 with \(T_t = \sum _{n\in \mathbb {N}}(t-t_0)^n T^{(n)}\) assume that \(\Vert T^{(n)}\Vert \le ac^{n-1}\) for all \(n\in \mathbb {N}\) with \(a,c\ge 0\). The following lower bound for the radius of convergence r of the power series of \(\lambda _t\) at \(t_0\) holds:

$$\begin{aligned} r\ge \min _{\lambda \in \Gamma }\frac{1}{a\Vert R_0(\lambda )\Vert +c}, \end{aligned}$$

where \(R_0(\cdot )\) is the resolvent operator of \(T_{t_0}\) and \(\Gamma \) is an arbitrary closed curve that lies outside \(\Sigma (T_{t_0})\) with positive direction which encloses \(\lambda _0\), where \(\Sigma (T_{t_0})\) is the spectrum of \(T_{t_0}\).

Corollary 6

Under the assumptions of Theorem 5, and if moreover X is a Hilbert space and \(T_{t_0}\) is normal, we get

$$\begin{aligned} r\ge \frac{1}{\frac{2a}{d}+c}, \end{aligned}$$

where \(d:={{\,\mathrm{dist}\,}}\left( \lambda _0,\Sigma (T_{t_0})\setminus \{\lambda _0\}\right) \).

1.2 Preliminaries

Lemma 7

Let \(T\in \mathcal {L}(X)\) with \(\Vert T\Vert <1\). Then the Neumann series \(\sum _{n=0}^\infty T^n\) converges in the operator norm and we have

$$\begin{aligned} ({{\,\mathrm{Id}\,}}-T)^{-1} = \sum _{n=0}^\infty T^n. \end{aligned}$$

This is a well-known result in functional analysis and can be found for instance in [24, Propostion I.1.6].

Definition

For \(T\in \mathcal {L}(X)\) the resolvent set \(\sigma (T)\) is the set of all \(\lambda \in \mathbb {C}\) such that \((T-\lambda {{\,\mathrm{Id}\,}})\) has a bounded inverse.

The operator-valued function \(R:\sigma (T)\rightarrow \mathcal {L}(X),\ \lambda \mapsto (T-\lambda {{\,\mathrm{Id}\,}})^{-1}\) is called the resolvent operator of T.

For abbreviation, we write \(T-\lambda \) instead of \(T-\lambda {{\,\mathrm{Id}\,}}\) when no confusion can arise.

Lemma 8

We have

$$\begin{aligned} R(\lambda ')-R(\lambda ) = (\lambda '-\lambda )R(\lambda ')R(\lambda ) \end{aligned}$$

for all \(\lambda ,\lambda '\in \sigma (T)\). In particular, \(R(\lambda )\) and \(R(\lambda ')\) commute.

Proof

The following easy computation shows the statement:

$$\begin{aligned} R(\lambda ')-R(\lambda )&= R(\lambda ')(T-\lambda )R(\lambda )-R(\lambda ')(T-\lambda ')R(\lambda )\\&= -R(\lambda ')\lambda R(\lambda ) + R(\lambda ')\lambda ' R(\lambda ) \\&= (\lambda '-\lambda )R(\lambda ')R(\lambda ). \end{aligned}$$

\(\square \)

Proposition

Let \(\lambda ,\lambda _0\in \sigma (T)\) with \(|\lambda -\lambda _0|<\Vert R(\lambda _0)\Vert ^{-1}\) then the so-called first Neumann series for the resolvent \(\sum _{n=0}^\infty (\lambda -\lambda _0)^n R(\lambda _0)^{n+1}\) is convergent. In this case, we have

$$\begin{aligned} R(\lambda )= \sum _{n=0}^\infty (\lambda -\lambda _0)^n R(\lambda _0)^{n+1}. \end{aligned}$$

This shows that \(R(\cdot )\) is holomorphic on \(\sigma (T)\).

Proof

Let \(\lambda ,\lambda _0\in \sigma (T)\). By Lemma 8 we obtain

$$\begin{aligned} R(\lambda ) = R(\lambda _0)\left( 1-(\lambda -\lambda _0)R(\lambda _0) \right) ^{-1}. \end{aligned}$$

If \(\Vert (\lambda -\lambda _0)R(\lambda _0)\Vert <1\), Lemma 7 implies that

$$\begin{aligned} R(\lambda ) = R(\lambda _0)\sum _{n=0}^\infty (\lambda -\lambda _0)^n R(\lambda _0)^n, \end{aligned}$$

which proves the statement. \(\square \)

1.3 Perturbation of the Resolvent Operator

We define

$$\begin{aligned} R(t,\lambda )= (T_t-\lambda )^{-1} \end{aligned}$$

for any \((t,\lambda )\) with \(\lambda \in \sigma (T_t)\). We already know from the last proposition that \(R(t,\lambda )\) is holomorphic in \(\lambda \) for each fixed t. Now we will show that \(R(t,\lambda )\) is holomorphic in both variables.

Proposition

Let \(\mathcal {T}:D\rightarrow \mathcal {L}(X)\) be holomorphic. Then \(R(t,\lambda )\) is holomorphic in both variables t and \(\lambda \).

Proof

Let \((t_0,\lambda _0)\) such that \(\lambda _0\in \sigma (T_{t_0})\). Since \(\mathcal {T}\) is holomorphic we can write \(T_t = \sum _{n=0}^\infty T^{(n)}(t-t_0)^n\) for \(|t-t_0|\) small. We have

$$\begin{aligned} T_t-\lambda&= T_{t_0}-\lambda _0 - (\lambda -\lambda _0)+\sum _{n=1}^\infty T^{(n)}(t-t_0)^n\\&= (T_{t_0}-\lambda _0)\Big (1-\Big (\lambda -\lambda _0-\sum _{n=1}^\infty T^{(n)}(t-t_0)^n\Big )R(t_0,\lambda _0) \Big ). \end{aligned}$$

Thus,

$$\begin{aligned} R(t,\lambda ) = (T_t-\lambda )^{-1} = R(t_0,\lambda _0)\Big (1-\Big (\lambda -\lambda _0-\sum _{n=1}^\infty T^{(n)}(t-t_0)^n\Big )R(t_0,\lambda _0) \Big )^{-1}. \end{aligned}$$

If

$$\begin{aligned} \Vert \big (\lambda -\lambda _0-\sum _{n=1}^\infty T^{(n)}(t-t_0)^n\big )R(t_0,\lambda _0)\Vert <1, \end{aligned}$$
(5)

the last expression can be written as a double series in \(\lambda \) and t by Lemma  7. This condition is satisfied if

$$\begin{aligned} |\lambda -\lambda _0|+\sum _{n=1}^\infty |t-t_0|^n\Vert T^{(n)}\Vert < \Vert R(t_0,\lambda _0)\Vert ^{-1}, \end{aligned}$$
(6)

which is the case if \(|\lambda -\lambda _0|\) and \(|t-t_0|\) are small enough. \(\square \)

Remark

If we fix \(\lambda \) and write \(R(t,\lambda )\) as a power series in t at \(t_0\) we get

$$\begin{aligned} R(t,\lambda ) = R(t_0,\lambda )\Big (\sum _{k=0}^\infty \big (-\sum _{n=1}^\infty T^{(n)}(t-t_0)^n R(t_0,\lambda )\big )^k\Big ). \end{aligned}$$

We can rewrite this as

$$\begin{aligned} R(t,\lambda ) = \sum _{k=0}^\infty (t-t_0)^k R^{(k)}(\lambda ), \end{aligned}$$
(7)

with

$$\begin{aligned} R^{(k)}(\lambda ) = \sum _{\begin{array}{c} k_1+\cdots +k_n=k\\ k_i\ge 1,\,n\ge 1 \end{array}} (-1)^n R(t_0,\lambda )T^{(k_1)}R(t_0,\lambda )T^{(k_2)}\cdots T^{(k_n)}R(t_0,\lambda ). \end{aligned}$$

The right-hand side of Eq. (7) is called the second Neumann series for the resolvent.

1.4 Perturbation of the Eigenprojection, Eigenvalue, and Eigenvector

Proposition

Let \(T\in \mathcal {L}(X)\) and \(\lambda _0\) be a simple isolated eigenvalue of \(T_0\). Let \(\Gamma \) be a closed curve in \(\sigma (T)\) with positive direction which encloses \(\lambda _0\). Then

$$\begin{aligned} P_0 := - \frac{1}{2\pi i}\int _\Gamma R(\lambda )\,\text{ d }\lambda \end{aligned}$$

is a projection on the eigenspace of \(\lambda _0\).

Proof

We need to show that:

  1. (i)

    \(P_0\) is a projection, i.e. \(P_0^2=P_0\).

  2. (ii)

    \(\mathbf {R}(P_0)= M_0\), where \(\mathbf {R}(P_0)\) is the range of \(P_0\) and \(M_0\) is the eigenspace of \(\lambda _0\).

Let \(\Gamma '\) be a closed curve in \(\sigma (T)\) with positive direction which encloses \(\lambda _0\) and lies outside \(\Gamma \). Then \(\int _\Gamma R(\lambda )\,\text{ d }\lambda = \int _{\Gamma '} R(\lambda )\,\text{ d }\lambda \) and we have

$$\begin{aligned} (-2\pi i)^2 P_0^2&= \int _\Gamma R(\lambda )\,\text{ d }\lambda \cdot \int _{\Gamma '} R(\mu )\,\text{ d }\mu \\&= \int _{\Gamma '} \int _\Gamma R(\lambda ) R(\mu ) \,\text{ d }\lambda \,\text{ d }\mu \\&= \int _{\Gamma '} \int _\Gamma \frac{1}{\mu -\lambda } R(\mu )\,\text{ d }\lambda \,\text{ d }\mu - \int _\Gamma \int _{\Gamma '} \frac{1}{\mu -\lambda } R(\lambda )\,\text{ d }\mu \,\text{ d }\lambda \\&= \int _{\Gamma '} 0 \,\text{ d }\mu - \int _\Gamma 2\pi i R(\lambda )\,\text{ d }\lambda \\&= -2\pi i \int _\Gamma R(\lambda )\,\text{ d }\lambda \\&= (-2\pi i)^2 P_0, \end{aligned}$$

where the third equality follows by Lemma 8. This shows (i). To prove (ii), we begin by showing \(M_0\subseteq \mathbf {R}(P_0)\). Let \(x\in M_0\), i.e. \(T(x)=\lambda _0 x\). Then

$$\begin{aligned} P_0(x)= -\frac{1}{2\pi i}\int _\Gamma (T-\lambda {{\,\mathrm{Id}\,}})^{-1}(x)\,\text{ d }\lambda = -\frac{1}{2\pi i}\int _\Gamma (\lambda _0-\lambda )^{-1}(x)\,\text{ d }\lambda = x. \end{aligned}$$

Now, we proceed to show that \(\mathbf {R}(P_0)\subseteq M_0\). We compute

$$\begin{aligned} (-2\pi i)TP_0&= \int _\Gamma T(T-\lambda )^{-1}\,\text{ d }\lambda \\&= \int _\Gamma {{\,\mathrm{Id}\,}}+\lambda (T-\lambda )^{-1}\,\text{ d }\lambda \\&= \int _\Gamma \lambda (T-\lambda )^{-1}\,\text{ d }\lambda \\&= {{\,\mathrm{Res}\,}}_{\lambda _0}(\lambda (T-\lambda )^{-1})\\&= \lambda _0 {{\,\mathrm{Res}\,}}_{\lambda _0}((T-\lambda )^{-1})\\&= \lambda _0 \int _\Gamma R(\lambda )\,\text{ d }\lambda \\&= (-2\pi i)\lambda _0 P_0. \end{aligned}$$

Hence, for all \(x\in X\) we get \(P_0(x)\in M_0\), which completes the proof. \(\square \)

In what follows, we assume that \(\mathcal {T}:D\rightarrow \mathcal {L}(X)\) is holomorphic and that \(\lambda _0\) is an isolated eigenvalue of \(T_{t_0}\), \(t_0\in D\), with algebraic multiplicity equal to one. Let \(\Gamma \) be a closed curve in \(\sigma (T_{t_0})\) with positive direction which encloses \(\lambda _0\).

Proposition

The operator-valued function \(\mathcal {P}:D\rightarrow \mathcal {L}(X),\quad t\rightarrow P_t:=\mathcal {P}(t)=\int _\Gamma R(t,\lambda )\,\text{ d }\lambda \) is holomorphic at an open neighbourhood of \(t_0.\) It holds that \(\dim (P_0X)=\dim (P_tX)\).

Proof

Since \(\inf _{\lambda \in \Gamma }\Vert R(t_0,\lambda )\Vert ^{-1}>0\), from (6) it follows that the second Neumann series for the resolvent is uniformly convergent for \(\lambda \) if \(|t-t_0|\) is sufficiently small. In particular, \(R(\lambda ,t)\) is well-defined for such \((\lambda ,t)\) and thus, \(\Gamma \subseteq \sigma (T_t)\). Hence, \(P_t\) is well-defined for \(|t-t_0|\) small and due to the proposition in A.3 we get that \(P_t\) is holomorphic at an open neighbourhood of \(t_0\). The equality of the dimensions follows by [15, Lemma I.4.10]. \(\square \)

Proof of Theorem 4

Combining the last two propositions we see that \(P_t\) is the eigenprojection for \(T_t\) on the eigenspace of a simple eigenvalue \(\lambda _t\) and that \(P_t\) is holomorphic in t. Accordingly, we deduce a perturbation series for the eigenvalue \(\lambda _t\) via the formula \(\lambda _t={{\,\mathrm{trace}\,}}(T_tP_t)\).

Let \(g_{0}\) be an eigenfunction of \(\lambda _{0}\). Then \(g_t= P_tg_{0}\in P_tX\) and thus an element of the eigenspace of \(\lambda _t\). If \(g_t\ne 0\) it is an eigenfunction of \(\lambda _t\). \(P_t\) is holomorphic and hence \(g_t\) is holomorphic. Since \(g_{0}\ne 0\), we have that \(g_t\ne 0\) at least for \(|t-t_0|\) small. \(\square \)

1.5 Lower Bound for the Radius of Convergence

Let \(T_t=\sum _{n=0}^\infty (t-t_0)^n T^{(n)}\) for \(t\in D\) and \(\lambda _0\) be an isolated eigenvalue of \(T_{t_0}\) with algebraic multiplicity equal to one. It follows from Eq. (5) that for a fixed \(\lambda \) the power series \(\sum _{n=0}^\infty R^{(n)}(\lambda )(t-t_0)^n\) is convergent, if \(\Vert R(t_0,\lambda )\sum _{n=1}^\infty T^{(n)}(t-t_0)^n\Vert <1\).

Proof of Theorem 5

Assume that \(\Vert T^{(n)}\Vert \le ac^{n-1}\) with \(a,c\ge 0\). Then the power series is convergent if

$$\begin{aligned} |t-t_0|< \frac{1}{\Vert R(t_0,\lambda )\Vert \cdot a+c}. \end{aligned}$$

Consequently, \(P_t=\int _\Gamma R(t,\lambda ) \,\text{ d }\lambda \) can be expressed as a power series if \(|t-t_0|< \inf _{\lambda \in \Gamma }\frac{1}{\Vert R(t_0,\lambda )\Vert \cdot a +c}\).

The so obtained lower bound of the radius of convergence of \(P_t\), and therewith of \(\lambda _t\), depends crucially on the chosen curve \(\Gamma \). It is worthwhile to get this bound as large as possible.

Proof of Corollary 6

If \(T_{t_0}\) is a normal operator on a Hilbert space we have that \(R(t_0,\lambda )\) is normal and as a consequence the operator norm of \(R(t_0,\lambda )\) is equal to the spectral radius of \(R(t_0,\lambda )\). From this we conclude

$$\begin{aligned} \Vert R(t_0,\lambda )\Vert = {{\,\mathrm{dist}\,}}(\lambda ,\Sigma (T_{t_0}))^{-1}, \end{aligned}$$

where \(\Sigma (T_{t_0})\) is the spectrum of \(T_{t_0}\) and \({{\,\mathrm{dist}\,}}\) is the Hausdorff distance. Let \(d:={{\,\mathrm{dist}\,}}(\lambda _0,\Sigma (T_{t_0})\setminus \{\lambda _0\})\) and let \(\Gamma \) be a circle with radius \(\frac{d}{2}\) and center \(\lambda _0\). Then \(\Vert R(t_0,\lambda )\Vert =\frac{2}{d}\) for every \(\lambda \in \Gamma \) and we get

$$\begin{aligned} r\ge \frac{1}{\frac{2a}{d}+c}. \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aurzada, F., Kettner, M. Persistence Exponents via Perturbation Theory: AR(1)-Processes. J Stat Phys 177, 651–665 (2019). https://doi.org/10.1007/s10955-019-02384-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-019-02384-3

Keywords

Navigation