Skip to main content
Log in

On the Consistency of the Reaction-Telegraph Process Within Finite Domains

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Reaction-telegraph equation (RTE) is a mathematical model that has often been used to describe natural phenomena, with specific applications ranging from physics to social sciences. In particular, in the context of ecology, it is believed to be a more realistic model to describe animal movement than the more traditional approach based on the reaction-diffusion equations. Indeed, the reaction-telegraph equation arises from more realistic microscopic assumptions about individual animal movement (the correlated random walk) and hence could be expected to be more relevant than the diffusion-type models that assume the simple, unbiased Brownian motion. However, the RTE has one significant drawback as its solutions are not positively defined. It is not clear at which stage of the RTE derivation the realism of the microscopic description is lost and/or whether the RTE can somehow be ‘improved’ to guarantee the solutions positivity. Here we show that the origin of the problem is twofold. Firstly, the RTE is not fully equivalent to the Cattaneo system from which it is obtained; the equivalence can only be achieved in a certain parameter range and only for the initial conditions containing a finite number of Fourier modes. Secondly, the Dirichlet type boundary conditions routinely used for reaction-diffusion equations appear to be meaningless if used for the RTE resulting in solutions with unrealistic properties. We conclude that, for the positivity to be regained, one has to use the Cattaneo system with boundary conditions of Robin type or Neumann type, and we show how relevant classes of solutions can be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Here we are considering “dispersal” in a generic sense: movement along a certain path.

  2. The counterpart situation where the particles are destroyed at the boundaries is described by the condition of no outgoing density at the borders, which is satisfied if \(u_{-} \left( 0, \zeta \right) = u_{+} \left( 1, \zeta \right) = 0\). The Robin set of conditions \(u \left( 0, \zeta \right) = j \left( 0, \zeta \right) \) and \(u \left( 1, \zeta \right) = -j \left( 1, \zeta \right) \) is only marginally different from the one used in the text, thus generating similar results.

  3. The appearance of Eq. (45) can also be understood as a result of the boundary condition at \(z=0\) being implemented for the spatial and temporal parts independently: if we impose that \(U \left( 0\right) = J \left( 0\right) \), we obtain \(C_{1} = C_{2}\) and \(C_{4} = -C_{3}\); now the temporal parts must satisfy \(\Psi \left( \zeta \right) = - \Phi \left( \zeta \right) \), which generates equation (45).

References

  1. Hastings, A.: An ecological theory journal at last. Theor. Ecol. 1, 1–4 (2008)

    Google Scholar 

  2. Hastings, A.: Population Biology: Concepts and Models. Springer-Verlag, New York (1997)

    MATH  Google Scholar 

  3. Kot, M.: Elements of Mathematical Ecology. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  4. Mangel, M.: The Theoretical Biologist’s Toolbox: Quantitative Methods for Ecology and Evolutionary Biology. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  5. Smith, J.M.: Models in Ecology. Cambridge University Press, Cambridge (1974)

    MATH  Google Scholar 

  6. Pyke, G.H.: Understanding movements of organisms: it’s time to abandon the Levy foraging hypothesis. Methods in Ecology and Evolution 6, 1–16 (2015)

    Google Scholar 

  7. Kareiva, P.M.: Local movement in herbivorous insecta: applying a passive diffusion model to mark-recapture field experiments. Oecologia 57, 322–327 (1983)

    ADS  Google Scholar 

  8. Bearup, D., Benefer, C.M., Petrovskii, S.V., Blackshaw, R.: Revisiting Brownian motion as a description of animal movement: a comparison to experimental movement data. Methods Ecol. Evol. 7, 1525–1537 (2016)

    Google Scholar 

  9. Hastings, A., Cuddington, K., Davies, K.F., Dugaw, C.J., Elmendorf, S., Freestone, A., Harrison, S., Holland, M., Lambrinos, J., Malvadkar, U., Melbourne, B.A., Moore, K., Taylor, C., Thomson, D.: The spatial spread of invasions: new developments in theory and evidence. Ecol. Lett. 8, 91–101 (2005)

    Google Scholar 

  10. Shigesada, N., Kawasaki, K.: Biological Invasions: Theory and Practice. Oxford University Press, Oxford (1997)

    Google Scholar 

  11. Skellam, J.G.: Random dispersal in theoretical populations. Biometrika 38, 196–218 (1951)

    MathSciNet  MATH  Google Scholar 

  12. Hastings, A., Harisson, S., McCann, K.: Unexpected spatial patterns in an insect outbreak match a predator diffusion model. Proc. R. Soc. Lond. B 264, 1837–1840 (1997)

    ADS  Google Scholar 

  13. Malchow, H., Petrovskii, S.V., Venturino, E.: Spatiotemporal Patterns in Ecology and Epidemiology: Theory, Models, Simulations. CRC Press, Boca Raton (2008)

    MATH  Google Scholar 

  14. Meron, E.: Nonlinear Physics of Ecosystems. CRC Press, Boca Raton (2015)

    MATH  Google Scholar 

  15. Kareiva, P.M., Shigesada, N.: Analyzing insect movement as a correlated random walk. Oecologia 56, 234–238 (1983)

    ADS  Google Scholar 

  16. Othmer, H.G., Dunbar, S.R., Alt, W.: Models of dispersal in biological systems. J. Math. Biol. 26, 263–298 (1988)

    MathSciNet  MATH  Google Scholar 

  17. Goldstein, S.: On diffusion by discontinuous movements, and on the telegraph equation. Q. J. Mech. Appl. Math. 4, 129–156 (1951)

    MathSciNet  MATH  Google Scholar 

  18. Kac, M.: A stochastic model related to the telegraph’s equation. Rocky Mt. J. Math. 4, 497–509 (1956)

    Google Scholar 

  19. Joseph, D.D., Preziosi, L.: Heat waves. Rev. Mod. Phys. 61, 41–73 (1989)

    ADS  MathSciNet  MATH  Google Scholar 

  20. Mendez, V., Fedotov, S., Horsthemke, W.: Reaction-Transport Systems: Mesoscopic Foundations, Fronts, and Spatial Instabilities. Springer, Berlin (2010)

    Google Scholar 

  21. Weiss, G.H.: Some applications of persistent random walks and the telegrapher’s equation. Physica A 311, 381–410 (2002)

    ADS  MathSciNet  MATH  Google Scholar 

  22. Masoliver, J., Lindenberg, K.: Continuous time persistent random walk: a review and some generalizations. Eur. Phys. J. B 90, 107 (2017)

    ADS  MathSciNet  Google Scholar 

  23. Angelani, L.: Run-and-tumble particles, telegrapher’s equation and absorption problems with partially reflecting boundaries. J. Phys. A 48, 495003 (2015)

    MathSciNet  MATH  Google Scholar 

  24. Malakar, K., Jemseena, V., Kundu, A., Kumar, K.V., Sabhapandit, S., Majumdar, S.N., Redner, S., Dhar, A.: Steady state, relaxation and first-passage properties of a run-and-tumble particle in one-dimension. J. Statis. Mech. 2018, 043215 (2018)

    MathSciNet  Google Scholar 

  25. Evans, M.R., Majumdar, S.N.: Run and tumble particle under resetting: a renewal approach. J. Phys. A 51, 475003 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  26. Dhar, A., Kundu, A., Majumdar, S.N., Sabhapandit, S., Schehr, G.: Run-and-tumble particle in one-dimensional confining potential: steady state, relaxation and first passage properties. Phys. Rev. E 99, 032132 (2019)

    ADS  Google Scholar 

  27. Le doussal, P., Majumdar, S.N., Schehr, G.: Non-crossing run and tumble particles on a line. Phys. Rev. E 100, 012113 (2019)

    ADS  Google Scholar 

  28. Berg, H.C.: E. coli in Motion. Springer, Berlin (2014)

    Google Scholar 

  29. Hadeler, K.P.: Reaction transport systems in biological modelling. In Mathematics Inspired by Biology, pp. 95–150. Springer, Berlin (1999)

    MATH  Google Scholar 

  30. Holmes, E.E.: Are diffusion models too simple? A comparison with telegraph models of invasion. Am. Nat. 142, 779–795 (1993)

    Google Scholar 

  31. Dunbar, S.R., Othmer, H.G.: On a nonlinear hyperbolic equation describing transmission lines, cell movement, and branching random walks. In Nonlinear Oscillations in Biology and Chemistry, pp. 274–289. Springer, Berlin (1986)

    MATH  Google Scholar 

  32. Dunbar, S.R.: A branching random evolution and a nonlinear hyperbolic equation. SIAM J. Appl. Math. 48, 1510–1526 (1988)

    MathSciNet  MATH  Google Scholar 

  33. Mainardi, F.: Signal velocity for transient waves in linear dissipative media. Wave Motion 5, 33–41 (1983)

    MathSciNet  MATH  Google Scholar 

  34. Sobolev, S.L.: Transport processes and travelling waves in systems with local nonequilibrium. Sov. Phys. Usp. 34(3), 217–229 (1991)

    ADS  Google Scholar 

  35. Lakestani, M., Saray, B.N.: Numerical solution of telegraph equation using interpolating scaling functions. Comput. Math. Appl. 60, 1964–1972 (2010)

    MathSciNet  MATH  Google Scholar 

  36. Gilding, B.H., Kersner, R.: Wavefront solutions of a nonlnear telegraph equation. J. Differ. Equ. 254, 599–636 (2013)

    ADS  MATH  Google Scholar 

  37. Buono, P.-L., Eftimie, R.: Symmetries and pattern formation in hyperbolic versus parabolic models of self-organised aggregation. J. Math. Biol. 71, 847–881 (2015)

    MathSciNet  MATH  Google Scholar 

  38. Artale Harris, P., Garra, R.: Nonlinear heat conduction equations with memory: physical meaning and analytical results. J. Math. Phys. 58, 063501 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  39. Di Crescenzo, A., Martinucci, B., Zacks, S.: Telegraph process with elastic boundary at the origin. Methodol. Comput. Appl. Prob. 20, 333–352 (2018)

    MathSciNet  MATH  Google Scholar 

  40. Giusti, A.: Dispersion relations for the time-fractional Cattaneo-Maxwell heat equation. J. Math. Phys. 59, 013506 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  41. Sobolev, S.L.: On hyperbolic heat-mass transfer equation. Int. J. Heat & Mass Transfer 122, 629–630 (2018)

    Google Scholar 

  42. Hajipour, M., Jajarmi, A., Malek, A., Baleanu, D.: Positivity-preserving sixth-order implicit finite difference weighted essentially non-oscillatory scheme for the nonlinear heat equation. Appl. Math. Comput. 325, 146–158 (2018)

    MathSciNet  MATH  Google Scholar 

  43. Niwa, H.: Migration dynamics of fish schools in heterothermal environments. J. Theor. Biol. 193, 215–231 (1998)

    Google Scholar 

  44. Murray, A.G., O’Callaghan, M., Jones, B.: Simple models of massive epidemics of herpesvirus in Australian (and New Zealand) pilchards. Environ. Int. 27, 243–248 (2001)

    Google Scholar 

  45. Ortega-Cejas, V., Fort, J., Mendez, V.: The role of the delay time in the modeling of biological range expansions. Ecology 85, 258–264 (2004)

    Google Scholar 

  46. Hillen, T.: Existence theory for correlated random walks on bounded domains. Can. Appl. Math. Q. 18, 1–40 (2010)

    MathSciNet  MATH  Google Scholar 

  47. Hillen, T., Swan, A.: The diffusion limit of transport equations in biology. In Mathematical models and methods for living systems, pp. 73–129. Springer, Berlin (2014)

    MATH  Google Scholar 

  48. Garabedian, P.R.: Partial Differential Equations. AMS Chelsea Publishing, Providence (1998)

    MATH  Google Scholar 

  49. Alharbi, W.G., Petrovskii, S.V.: Critical domain problem for the reaction-telegraph equation model of population dynamics. Mathematics 6, 59 (2018)

    MATH  Google Scholar 

  50. Cirilo, E., Petrovskii, S.V., Romeiro, N., Natti, P.: Investigation into the critical domain problem for the reaction-telegraph equation using advanced numerical algorithms. Int. J. Appl. Comput. Math. 5, 54 (2019)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by The Royal Society (UK) through the Grant No. NF161377 (to P.F.C.T and S.V.P.). The publication has been prepared with the support of the “RUDN University Program 5-100” (to S.V.P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergei V. Petrovskii.

Additional information

Communicated by Irene Giardina.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tilles, P.F.C., Petrovskii, S.V. On the Consistency of the Reaction-Telegraph Process Within Finite Domains. J Stat Phys 177, 569–587 (2019). https://doi.org/10.1007/s10955-019-02379-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-019-02379-0

Keywords

Navigation