Skip to main content
Log in

Propagation of Moments and Semiclassical Limit from Hartree to Vlasov Equation

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In this paper, we prove a quantitative version of the semiclassical limit from the Hartree to the Vlasov equation with singular interaction, including the Coulomb potential. To reach this objective, we also prove the propagation of velocity moments and weighted Schatten norms which implies the boundedness of the space density of particles uniformly in the Planck constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L., Figalli, A., Friesecke, G., Giannoulis, J., Paul, T.: Semiclassical limit of quantum dynamics with rough potentials and well-posedness of transport equations with measure initial data. Commun. Pure Appl. Math. 64(9), 1199–1242 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambrosio, L., Friesecke, G., Giannoulis, J.: Passage from quantum to classical molecular dynamics in the presence of Coulomb interactions. Commun. Partial Differ. Equ. 35(8), 1490–1515 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Amour, L., Khodja, M., Nourrigat, J.: The classical limit of the Heisenberg and time-dependent Hartree-Fock equations: the Wick symbol of the solution. Math. Res. Lett. 20(1), 119–139 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Amour, L., Khodja, M., Nourrigat, J.: The semiclassical limit of the time dependent Hartree–Fock equation: the Weyl symbol of the solution. Anal. PDE 6(7), 1649–1674 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Araki, H.: On an inequality of Lieb and Thirring. Lett. Math. Phys. 19(2), 167–170 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Athanassoulis, A., Paul, T., Pezzotti, F., Pulvirenti, M.: Strong semiclassical approximation of Wigner functions for the Hartree dynamics. Rend. Lincei Mat. Appl. 22(4), 525–552 (2011)

    MathSciNet  MATH  Google Scholar 

  7. Bach, V., Breteaux, S., Petrat, S., Pickl, P., Tzaneteas, T.: Kinetic energy estimates for the accuracy of the time-dependent Hartree-Fock approximation with Coulomb interaction. J. Math. Pures Appl. 105(1), 1–30 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations. Grundlehren der Mathematischen Wissenschaften, vol. 343. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  9. Bardos, C., Erdös, L., Golse, F., Mauser, N.J., Yau, H.-T.: Derivation of the Schrödinger–Poisson equation from the quantum N-body problem. C. R. Math. 334(6), 515–520 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bardos, C., Golse, F., Mauser, N.J.: Weak coupling limit of the N-particle Schrödinger equation. Methods Appl. Anal. 7(2), 275–294 (2000)

    MathSciNet  MATH  Google Scholar 

  11. Benedikter, N., Jaksic, V., Porta, M., Saffirio, C., Schlein, B.: Mean-field evolution of fermionic mixed states. Commun. Pure Appl. Math. 69(12), 2250–2303 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Benedikter, N., Porta, M., Saffirio, C., Schlein, B.: From the Hartree dynamics to the Vlasov equation. Arch. Ration. Mech. Anal. 221(1), 273–334 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Benedikter, N., Porta, M., Schlein, B.: Mean-field evolution of fermionic systems. Commun. Math. Phys. 331(3), 1087–1131 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Brezzi, F., Markowich, P.A.: The three-dimensional Wigner-Poisson problem: existence, uniqueness and approximation. Math. Methods Appl. Sci. 14(1), 35–61 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Castella, F.: L2 solutions to the Schrödinger-Poisson system: existence, uniqueness, time behaviour, and smoothing effects. Math. Models Methods Appl. Sci. 7(08), 1051–1083 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Egorov, Y.V., Kondratiev, V.A.: On moments of negative Eigenvalues of an elliptic operator. In: Demuth, M., Schulze, B.W. (eds.) Partial Differential Operators and Mathematical Physics. Operator Theory Advances and Applications, pp. 119–126. Birkhäuser, Basel (1995)

    Chapter  Google Scholar 

  17. Erdös, L., Yau, H.-T.: Derivation of the nonlinear Schrödinger equation from a many body Coulomb system. Adv. Theor. Math. Phys. 5(6), 1169–1205 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fournais, S., Lewin, M., Solovej, J.P.: The semi-classical limit of large fermionic systems. Calc. Var. Partial Differ. Equ. 57(4), 105 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fröhlich, J., Knowles, A.: A microscopic derivation of the time-dependent Hartree-Fock equation with Coulomb two-body interaction. J. Stat. Phys. 145(1), 23 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Fröhlich, J., Knowles, A., Schwarz, S.: On the mean-field limit of Bosons with Coulomb two-body interaction. Commun. Math. Phys. 288(3), 1023–1059 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Gasser, I., Illner, R., Markowich, P.A., Schmeiser, C.: Semiclassical, asymptotics and dispersive effects for Hartree-Fock systems. ESAIM Math. Model. Numer. Anal. 32(6), 699–713 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ginibre, J., Velo, G.: On a class of non linear Schrödinger equations with non local interaction. Math. Z. 170(2), 109–136 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ginibre, J., Velo, G.: The global cauchy problem for the non linear Schrödinger equation revisited. Ann. Inst. Henri Poincare C Non Linear Anal. 2(4), 309–327 (1985)

    Article  ADS  MATH  Google Scholar 

  24. Golse, F., Mouhot, C., Paul, T.: On the mean field and classical limits of quantum mechanics. Commun. Math. Phys. 343(1), 165–205 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Golse, F., Paul, T.: Empirical measures and quantum mechanics: application to the mean-field limit. arXiv:1711.08350 (2017)

  26. Golse, F., Paul, T.: The Schrödinger equation in the mean-field and semiclassical regime. Arch. Ration. Mech. Anal. 223(1), 57–94 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Golse, F., Paul, T.: Wave packets and the quadratic Monge-Kantorovich distance in quantum mechanics. C. R. Math. 356(2), 177–197 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  28. Golse, F., Paul, T., Pulvirenti, M.: On the derivation of the Hartree equation from the N-body Schrödinger equation: uniformity in the Planck constant. J. Funct. Anal. 275(7), 1603–1649 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  29. Graffi, S., Martinez, A., Pulvirenti, M.: Mean-field approximation of quantum systems and classical limit. Math. Models Methods Appl. Sci. 13(01), 59–73 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Gérard, P., Markowich, P.A., Mauser, N.J., Poupaud, F.: Homogenization limits and wigner transforms. Commun. Pure Appl. Math. 50(4), 323–379 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  31. Hauray, M., Jabin, P.-E.: N-particles approximation of the Vlasov equations with singular potential. Arch. Ration. Mech. Anal. 183(3), 489–524 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Hauray, M., Jabin, P.-E.: Particle approximation of Vlasov equations with singular forces: propagation of chaos. Ann. Sci. l’École Normale Supér. Quatr. Série 48(4), 891–940 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Hayashi, N., Ozawa, T.: Smoothing effect for some Schrödinger equations. J. Funct. Anal. 85(2), 307–348 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  34. Holding, T., Miot, E.: Uniqueness and stability for the Vlasov-Poisson system with spatial density in Orlicz spaces. In: Mathematical Analysis in Fluid Mechanics—Selected Recent Results. Contemp. Math., vol. 710, pp. 145–162. Am. Math. Soc., Providence, RI (2018)

  35. Illner, R., Zweifel, P.F., Lange, H.: Global existence, uniqueness and asymptotic behaviour of solutions of the Wigner-Poisson and Schrodinger-Poisson systems. Math. Models Methods Appl. Sci. 17(5), 349–376 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Jabin, P.-E., Wang, Z.: Mean field limit and propagation of Chaos for Vlasov systems with bounded forces. J. Funct. Anal. 271(12), 3588–3627 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  37. Lazarovici, D.: The Vlasov-Poisson dynamics as the mean field limit of extended charges. Commun. Math. Phys. 347(1), 271–289 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Lazarovici, D., Pickl, P.: A mean field limit for the Vlasov-Poisson system. Arch. Ration. Mech. Anal. 225(3), 1201–1231 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  39. Lewin, M., Sabin, J.: The Hartree equation for infinitely many particles I. Well-Posedness theory. Commun. Math. Phys. 334(1), 117–170 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Lieb, E.H., Loss, M.: Analysis, 2nd edn. American Mathematical Society, Providence, RI (2001)

    MATH  Google Scholar 

  41. Lions, P.-L., Paul, T.: Sur les mesures de Wigner. Rev. Mat. Iberoam. 9(3), 553–618 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  42. Lions, P.L., Perthame, B.: Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system. Invent. Math. 105(2), 415–430 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Loeper, G.: Uniqueness of the solution to the Vlasov-Poisson system with bounded density. J. Math. Pures Appl. 86(1), 68–79 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  44. Markowich, P.A., Mauser, N.J.: The classical limit of a self-consistent quantum-Vlasov equation in 3D. Math. Models Methods Appl. Sci. 03(01), 109–124 (1993)

    Article  MATH  Google Scholar 

  45. Miot, E.: A uniqueness criterion for unbounded solutions to the Vlasov-Poisson system. Commun. Math. Phys. 346(2), 469–482 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Mitrouskas, D., Petrat, S., Pickl, P.: Bogoliubov corrections and trace norm convergence for the Hartree dynamics. arXiv:1609.06264 (2016)

  47. Petrat, S.: Hartree corrections in a mean-field limit for fermions with Coulomb interaction. J. Phys. A 50(24), 244004 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Petrat, S., Pickl, P.: A new method and a new scaling for deriving fermionic mean-field dynamics. Math. Phys. Anal. Geom. 19(1), 3 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  49. Pickl, P.: A simple derivation of mean field limits for quantum systems. Lett. Math. Phys. 97(2), 151–164 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Porta, M., Rademacher, S., Saffirio, C., Schlein, B.: Mean field evolution of fermions with Coulomb interaction. J. Stat. Phys. 166(6), 1345–1364 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Rodnianski, I., Schlein, B.: Quantum fluctuations and rate of convergence towards mean field dynamics. Commun. Math. Phys. 291(1), 31–61 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Saffirio, C.: Mean-field evolution of fermions with singular interaction. arXiv:1801.02883 (2018)

  53. Santambrogio, F.: Optimal Transport for Applied Mathematicians. Progress in Nonlinear Differential Equations and Their Applications, vol. 87. Springer International Publishing, Cham (2015)

    Book  MATH  Google Scholar 

  54. Schmeißer, H.-J., Sickel, W.: Vector-valued Sobolev spaces and Gagliardo-Nirenberg inequalities. In: Nonlinear Elliptic and Parabolic Problems, Progress in Nonlinear Differential Equations and Their Applications, pp. 463–472. Springer, Berlin (2005)

  55. Simon, B.: Trace Ideals and Their Applications: Second Edition. Mathematical Surveys and Monographs, vol. 120. American Mathematical Society, Providence, RI (2005)

    Google Scholar 

  56. Thirring, W.: Quantum Mechanics of Large Systems. In: Lehrbuch der mathematischen Physik, vol. 4. Springer, Wien (1983)

  57. Villani, C.: Topics in Optimal Transportation. American Mathematical Society, Providence, RI (2003)

    Book  MATH  Google Scholar 

  58. Zhang, P., Zheng, Y., Mauser, N.J.: The limit from the Schrödinger-Poisson to the Vlasov-Poisson equations with general data in one dimension. Commun. Pure Appl. Math. 55(5), 582–632 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Lafleche.

Additional information

Communicated by Eric A. Carlen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Besov Spaces

We recall that a possible definition of Besov spaces (see e.g. [8]) can be done by defining the following norm

$$\begin{aligned} \Vert u\Vert _{B^{s}_{p,r}} = \left\| \left( 2^{sj}\Vert \Delta _ju\Vert _{L^p}\right) _{j\in \mathbb {Z}}\right\| _{\ell ^r}, \end{aligned}$$
(82)

where \(\Delta _j\) is defined by

$$\begin{aligned} \Delta _j u&= 0 \qquad \qquad \qquad \qquad \qquad \qquad \, \text {when } j\le -2 \\ \Delta _{-1} u&= \hat{\chi }*u \\ \Delta _j u&= \mathcal {F}_y(\varphi (2^{-j}y))*u \qquad \qquad \text {when } j\ge 0, \end{aligned}$$

with

$$\begin{aligned}&\chi \in C^\infty _c(B(0,4/3),[0,1]) \nonumber \\&\varphi \in C^\infty _c\left( B\left( 0,8/3\right) \backslash B\left( 0,3/4\right) ,[0,1]\right) \nonumber \\&\chi + \sum _{j\ge 0} \varphi (2^{-j}\cdot ) = 1. \end{aligned}$$
(83)

We also define the space of log-Lipschitz functions by defining the norm

$$\begin{aligned} \Vert u\Vert _{LL} = \sup _{|x-y|\in (0,1)}\left( \frac{|u(x)-u(y)|}{|x-y|\left( 1+\left| \ln (|x-y|)\right| \right) }\right) , \end{aligned}$$

for measurable functions u vanishing at infinity. We have the following properties of Besov spaces

Proposition A.1

(84)

If K is the Coulomb potential such that \(\Delta K = \delta _0\), then we get

$$\begin{aligned} \left| \nabla K\right| = \frac{C}{|x|^{d-1}} \in B^1_{1,\infty }. \end{aligned}$$
(85)

If \(v\in L^\infty \) and \(u\in B^{1}_{1,\infty }\), then

$$\begin{aligned} \Vert u*v\Vert _{B^1_{\infty ,\infty }}&\le \left\| u\right\| _{B^1_{1,\infty }} \Vert v\Vert _{L^\infty } \end{aligned}$$
(86)
$$\begin{aligned} \Vert u*v\Vert _{{\dot{H}}^1}&\le C \Vert u\Vert _{B^1_{1,\infty }} \Vert v\Vert _{L^2}. \end{aligned}$$
(87)

Proof

The proof of (84) and (85) can be found for example in [8, Chapter 2]. To prove (86), we remark that since \(\Delta _j\) is a convolution by a smooth and rapidly decaying supported function, \(\Delta _j(u*v) = \Delta _j(u)*v\). By Hölder’s inequality, we deduce the following inequality

$$\begin{aligned} \Vert u*v\Vert _{B^1_{\infty ,\infty }}&= \left\| \left( 2^{j}\Vert \Delta _ju*v\Vert _{L^\infty }\right) _{j\in \mathbb {Z}}\right\| _{\ell ^\infty } \\&\le \Vert v\Vert _{L^\infty } \left\| \left( 2^{j}\Vert \Delta _ju\Vert _{L^1}\right) _{j\in \mathbb {Z}}\right\| _{\ell ^\infty } = \Vert u\Vert _{B^1_{1,\infty }} \Vert v\Vert _{L^\infty }. \end{aligned}$$

To prove (87), we use the Fourier definition of \(\dot{H}^1\) and the fact the Fourier transform is an isometry on \(L^2\) to obtain

$$\begin{aligned} \Vert u*v\Vert _{{\dot{H}}^1}&\le C\Vert |y|\hat{u}(y)\hat{v}(y)\Vert _{L^2_y} \le C\Vert |y|\hat{u}(y)\Vert _{L^\infty _y} \Vert v\Vert _{L^2}. \end{aligned}$$

Then by using the fact that \(\varphi (2^{-j} y)>0 \Leftrightarrow |y|\in 2^j[3/4,8/3]\), we obtain the existence of \(j_y\ge -2\) such that \(\varphi (2^{-j}y) = 0\) for any \(j\notin \{j_y-1,j_y,j_y+1\}\) (If \(j_y=-2\), then it means that \(\chi (y)>0\)). Then, by (83), we get

$$\begin{aligned} \Vert y\hat{u}(y)\Vert _{L^\infty }&= \left\| \left( \chi (y) + \sum _{j\ge 0} \varphi (2^{-j}y)\right) |y|\hat{u}(y)\right\| _{L^\infty _y} \\&\le C \left\| \sum _{k=-1}^12^{j_y+k}\mathcal {F}(\Delta _{j_y+k}u)(y)\right\| _{L^\infty } \\&\le C \sup _{j\in \mathbb {Z}}\left( 2^{j} \Vert \mathcal {F}(\Delta _ju)\Vert _{L^\infty }\right) \le C \left\| \left( 2^{j} \Vert \Delta _ju\Vert _{L^1}\right) _{j\in \mathbb {Z}}\right\| _{\ell ^\infty }. \end{aligned}$$

Therefore, by the definition (82), we obtain (87). \(\square \)

Appendix B: Wasserstein distances

We recall the definition of the classical Wasserstein–(Monge–Kantorovich) distances between two probability measures \((\mu _0,\mu _1)\in \mathcal {P}(X)^2\) on a given separable Banach space X. We first define the notion of coupling by saying that \(\gamma \in \mathcal {P}(X^2)\) is a coupling of \(\mu _0\) and \(\mu _1\) when

$$\begin{aligned} (\pi _1)_\#\gamma = \mu _0 \text { and } (\pi _2)_\#\gamma = \mu _1, \end{aligned}$$

where \(\pi _1\) and \(\pi _2\) are respectively the projection on the first and second variable and \(\pi _\#\gamma \) denotes the pushforward of the measure \(\gamma \) by the map \(\pi \). In other words

$$\begin{aligned} \forall \varphi \in C_0(X), \int _{X^2} \varphi (x) \gamma (\mathrm {d}x\,\mathrm {d}y) = \int _{X} \varphi (x) \mu _0(\mathrm {d}x). \end{aligned}$$

We denote by \(\Pi (\mu _0,\mu _1)\) the set of couplings of \(\mu _0\) and \(\mu _1\). Then we define the Wasserstein–(Monge–Kantorovich) distance in the following way

$$\begin{aligned} W_p(\mu _0,\mu _1) := \left( \inf _{\gamma \in \Pi (\mu _0,\mu _1)}\int _{X^2} \Vert x-y\Vert _X^p\gamma (\mathrm {d}x\,\mathrm {d}y)\right) ^\frac{1}{p}. \end{aligned}$$
(88)

The existence of a minimizer is well known and we refer for example to the books [57] or [53] for more properties of these distances.

The following proposition may be classical but we prove it for the sake of completeness

Proposition B.1

Let \((f_0,f_1)\in \mathcal {P}(\mathbb {R}^{2d})^2\) and for \(\mathrm {i}\in \{0,1\}\), let \(\rho _\mathrm {i}= (\pi _1)_\# f_\mathrm {i}\). Then

$$\begin{aligned} W_2(\rho _0,\rho _1) \le W_2(f_0,f_1). \end{aligned}$$

Proof

Let \(\gamma \in \mathcal {P}(\mathbb {R}^{2d}\times \mathbb {R}^{2d})\) be the optimal transport plan from \(f_0\) to \(f_1\) and define \(\gamma _\rho = (\pi _{1,3})_\#\gamma \) by

$$\begin{aligned} \forall \varphi \in C_0(\mathbb {R}^{2d}), \int _{\mathbb {R}^{2d}}\varphi (x,y)\gamma _\rho (\mathrm {d}x\,\mathrm {d}y) := \int _{\mathbb {R}^{4d}} \varphi (x,y)\gamma (\mathrm {d}x\,\mathrm {d}\xi \,\mathrm {d}y\,\mathrm {d}\eta ). \end{aligned}$$

Then for any \(\varphi \in C_0\), since the first marginal of \(\gamma \) is \(f_0\),

$$\begin{aligned} \int _{\mathbb {R}^{2d}}\varphi (x)\gamma _\rho (\mathrm {d}x\,\mathrm {d}y)&= \int _{\mathbb {R}^{4d}} \varphi (x)\gamma (\mathrm {d}x\,\mathrm {d}\xi \,\mathrm {d}y\,\mathrm {d}\eta ) \\&= \int _{\mathbb {R}^{2d}}\varphi (x)f_0(\mathrm {d}x\,\mathrm {d}\xi ) \\&= \int _{\mathbb {R}^d}\varphi (x)\rho _0(\mathrm {d}x). \end{aligned}$$

Hence, the first marginal of \(\gamma _\rho \) is \(\rho _0\). In the same way, the second marginal of \(\gamma _\rho \) is \(\rho _1\), and we deduce that \(\gamma _\rho \in \Pi (\rho _0,\rho _1)\). Next, let \((\varphi _n)_{n\in \mathbb {N}} \in (C_0(\mathbb {R}^{2d})\cap L^1(\gamma _\rho ))^\mathbb {N}\) be an increasing sequence of nonnegative functions converging pointwise to \((x,y)\mapsto |x-y|^2\). By definition of \(\gamma _\rho \), for any \(n\in \mathbb {N}\), \(\varphi \in L^1(\gamma )\). Therefore, by the monotone convergence theorem,

$$\begin{aligned} \int _{\mathbb {R}^{2d}}|x-y|^2 \gamma _\rho (\mathrm {d}x\,\mathrm {d}y)&= \lim \limits _{n\rightarrow \infty } \int _{\mathbb {R}^{2d}}\varphi _n(x,y)\gamma _\rho (\mathrm {d}x\,\mathrm {d}y) \\&= \lim \limits _{n\rightarrow \infty } \int _{\mathbb {R}^{4d}} \varphi _n(x,y)\gamma (\mathrm {d}x\,\mathrm {d}\xi \,\mathrm {d}y\,\mathrm {d}\eta ) \\&= \int _{\mathbb {R}^{4d}} |x-y|^2\gamma (\mathrm {d}x\,\mathrm {d}\xi \,\mathrm {d}y\,\mathrm {d}\eta ) \\&\le \int _{\mathbb {R}^{4d}} (|x-y|^2+|\xi -\eta |^2)\gamma (\mathrm {d}x\,\mathrm {d}\xi \,\mathrm {d}y\,\mathrm {d}\eta ) = W_2(f_0,f_1)^2. \end{aligned}$$

By definition (88), we deduce

$$\begin{aligned} W_2(\rho _0,\rho _1)^2 \le \int _{\mathbb {R}^{2d}}|x-y|^2 \gamma _\rho (\mathrm {d}x\,\mathrm {d}y) \le W_2(f_0,f_1)^2, \end{aligned}$$

which proves the result. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lafleche, L. Propagation of Moments and Semiclassical Limit from Hartree to Vlasov Equation. J Stat Phys 177, 20–60 (2019). https://doi.org/10.1007/s10955-019-02356-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-019-02356-7

Keywords

Mathematics Subject Classification

Navigation