Skip to main content
Log in

Extended Z-Invariance for Integrable Vector and Face Models and Multi-component Integrable Quad Equations

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In a previous paper (Kels in J Phys A 50(49):495202, 2017), the author has established an extension of the Z-invariance property for integrable edge-interaction models of statistical mechanics, that satisfy the star–triangle relation (STR) form of the Yang–Baxter equation (YBE). In the present paper, an analogous extended Z-invariance property is shown to also hold for integrable vector models and interaction-round-a-face (IRF) models of statistical mechanics respectively. As for the previous case of the STR, the Z-invariance property is shown through the use of local cubic-type deformations of a 2-dimensional surface associated to the models, which allow an extension of the models onto a subset of next nearest neighbour vertices of \(\mathbb {Z}^3\), while leaving the partition functions invariant. These deformations are permitted as a consequence of the respective YBE’s satisfied by the models. The quasi-classical limit is also considered, and it is shown that an analogous Z-invariance property holds for the variational formulation of classical discrete Laplace equations which arise in this limit. From this limit, new integrable 3D-consistent multi-component quad equations are proposed, which are constructed from a degeneration of the equations of motion for IRF Boltzmann weights.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Notes

  1. Also referred to simply as a “box” [9, 11].

  2. For N-state discrete spin models the constant factor is simply given by a power of N. As was noted in [1], there is some subtlety for continuous spin models where this constant becomes infinite (proportional to \(\delta (0)\)). These cases then appear to require an appropriate regularisation in order to properly define the deformed partition functions. In any case, the observables of the deformed model will not be affected, since these are typically expressed in terms of derivatives of the partition function.

  3. Since these models are not formed from edge Boltzmann weights, these would simply be elementary squares, rather than four-squares.

  4. As a slight abuse of notation, both spin variables of the previous section, and classical variables that arise from the quasi-classical limit in this section, are referred to with the notation \({x}_i\).

  5. Note that the scalar case of (42) (or (51)), corresponds to \(n=2\), while the scalar case of (61) corresponds to \(n=1\). This is because the extra condition on the variables (44) (or (52)), has already been used in taking the limit to (55).

References

  1. Kels, A.P.: Exactly solved models on planar graphs with vertices in \({\mathbb{Z}}^3\). J. Phys. A 50(49), 495202 (2017). arXiv:1705.06528

    Article  MathSciNet  MATH  Google Scholar 

  2. Baxter, R.J.: Solvable eight vertex model on an arbitrary planar lattice. Phil. Trans. R. Soc. Lond. 289, 315–346 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  3. Baxter, R.J.: Free-fermion, checkerboard and Z-invariant lattice models in statistical mechanics. Proc. R. Soc. Lond. A 404, 1–33 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  4. Baxter, R.J.: Exactly Solved Models in Statistical Mechanics. Academic, London (1982)

    MATH  Google Scholar 

  5. Perk, J., Au-Yang, H.: Yang–baxter equations. In: Françoise, J.-P., Naber, G.L., Tsun, T.S. (eds.) Encyclopedia of Mathematical Physics, pp. 465–473. Academic Press, Oxford (2006)

    Chapter  Google Scholar 

  6. Lobb, S., Nijhoff, F.: Lagrangian multiforms and multidimensional consistency. J. Phys. A42(45), 454013 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  7. Adler, V., Bobenko, A., Suris, Y.: Classification of integrable equations on quad-graphs. The consistency approach. Commun. Math. Phys. 233(3), 513–543 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Bazhanov, V.V., Kashaev, R.M., Mangazeev, V.V., Stroganov, Y.G.: \({Z}_n^{\otimes (n-1)}\) generalization of the chiral Potts model. Commun. Math. Phys. 138, 393–408 (1991)

    Article  ADS  MATH  Google Scholar 

  9. Bazhanov, V.V., Baxter, R.J.: New solvable lattice models in three-dimensions. J. Stat. Phys. 69, 453–585 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Baxter, R.J.: Star–triangle and star–star relations in statistical mechanics. Int. J. Mod. Phys. B 11, 27–37 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Bazhanov, V.V., Sergeev, S.M.: Elliptic gamma-function and multi-spin solutions of the Yang–Baxter equation. Nucl. Phys. B 856, 475–496 (2012). arXiv:1106.5874

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Bazhanov, V.V., Kels, A.P., Sergeev, S.M.: Comment on star-star relations in statistical mechanics and elliptic gamma-function identities. J. Phys. A 46, 152001 (2013). arXiv:1301.5775

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Yamazaki, M.: New integrable models from the Gauge/YBE correspondence. J. Stat. Phys. 154, 895 (2014). arXiv:1307.1128

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Gahramanov, I., Jafarzade, S.: Comments on the multi-spin solution to the Yang–Baxter equation and basic hypergeometric sum/integral identity. In: Proceedings, ISQS-25: Prague, Czech Republic, June 6–10 (2017) arXiv:1710.09106

  15. Kels, A.P., Yamazaki, M.: Lens elliptic gamma function solution of the Yang–Baxter equation at roots of unity. J. Stat. Mech. 1802(2), 023108 (2018). arXiv:1709.07148

    Article  MathSciNet  Google Scholar 

  16. Bazhanov, V.V., Mangazeev, V.V., Sergeev, S.M.: Faddeev–Volkov solution of the Yang–Baxter equation and discrete conformal symmetry. Nucl. Phys. B 784, 234–258 (2007). arXiv:hep-th/0703041

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Bazhanov, V.V., Sergeev, S.M.: A master solution of the quantum Yang–Baxter equation and classical discrete integrable equations. Adv. Theor. Math. Phys. 16(1), 65–95 (2012). arXiv:1006.0651

    Article  MathSciNet  MATH  Google Scholar 

  18. Bazhanov, V.V., Kels, A.P., Sergeev, S.M.: Quasi-classical expansion of the star–triangle relation and integrable systems on quad-graphs. J. Phys. A 49, 464001 (2016). arXiv:1602.07076

    Article  MathSciNet  MATH  Google Scholar 

  19. Kels, A.P.: Integrable quad equations derived from the quantum Yang–Baxter equation. arXiv:1803.03219

  20. Nijhoff, F.W., Walker, A.J.: The discrete and continuous Painlevé VI hierarchy and the Garnier systems. Glasgow Math. J. 43(A), 109–123 (2001)

    Article  MATH  Google Scholar 

  21. Bobenko, A.I., Suris, Y.B.: Integrable systems on quad-graphs. Int. Math. Res. Not. 2002(11), 573–611 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Bobenko, A.I., Suris, Y.B.: Discrete Differential Geometry: Integrable Structure. Graduate Studies in Mathematics, vol. 98. American Mathematical Society, Providence, RI (2008)

    Book  MATH  Google Scholar 

  23. Bobenko, A., Günther, F.: On discrete integrable equations with convex variational principles. Lett. Math. Phys. 102(2), 181–202 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Atkinson, J.: Bäcklund transformations for integrable lattice equations. J. Phys. A Math. Theor. 41(13), 135202 (2008)

    Article  ADS  MATH  Google Scholar 

  25. Atkinson, J.: Linear quadrilateral lattice equations and multidimensional consistency. J. Phys. A Math. Theor. 42(45), 454005 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Baxter, R.J.: Partition function of the eight vertex lattice model. Ann. Phys. 70, 193–228 (1972). [Ann. Phys. 281, 187 (2000)]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Andrews, G.E., Baxter, R.J., Forrester, P.J.: Eight-vertex SOS model and generalized Rogers–Ramanujan-type identities. J. Stat. Phys. 35, 193–266 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Adler, V.E., Bobenko, A.I., Suris, Y.B.: Discrete nonlinear hyperbolic equations. classification of integrable cases. Funct. Anal. Appl. 43, 3–17 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kels, A.P.: Analytic and numerical investigation of lattice models. PhD thesis, Australian National University, (2013)

  30. Hietarinta, J.: A new two-dimensional lattice model that is ’consistent around a cube’. J. Phys. A Math. Gen. 37(6), L67 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis. Cambridge Mathematical Library. Cambridge University Press, Cambridge (1996). Reprint of the fourth (1927) edition

    Book  MATH  Google Scholar 

  32. Au-Yang, H., Perk, J.H.: Critical correlations in a Z-invariant inhomogeneous Ising model. Physica A 144(1), 44–104 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  33. Martínez, J.R.: Correlation functions for the Z-invariant Ising model. Phys. Lett. A 227(3), 203–208 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  34. Martínez, J.: Multi-spin correlation functions for the Z-Invariant Ising model. Physica A 256(3–4), 463–484 (1998)

    Article  ADS  Google Scholar 

  35. Costa-Santos, R.: Geometrical aspects of the Z-invariant Ising model. Eur. Phys. J. B 53(1), 85–90 (2006)

    Article  ADS  Google Scholar 

  36. Au-Yang, H., Perk, J.H.H.: Q-dependent susceptibilities in ferromagnetic quasiperiodic Z-invariant Ising models. J. Stat. Phys. 127(2), 265–286 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Boutillier, C., de Tilière, B.: The critical Z-invariant Ising model via dimers: the periodic case. Probab. Theory Relat. Fields 147(3), 379–413 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  38. Boutillier, C., de Tilière, B.: The critical Z-invariant Ising model via dimers: locality property. Commun. Math. Phys. 301, 473–516 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Jimbo, M., Miwa, T., Nakayashiki, A.: Difference equations for the correlation functions of the eight-vertex model. J. Phys. A 26(9), 2199 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Baxter, R.J.: Functional relations for the order parameters of the chiral Potts model. J. Stat. Phys. 91(3–4), 499–524 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  41. Baxter, R.J.: Derivation of the order parameter of the chiral Potts model. Phys. Rev. Lett. 94, 130602 (2005). arXiv:cond-mat/0501227

    Article  ADS  Google Scholar 

  42. Au-Yang, H., Perk, J.H.H.: Spontaneous magnetization of the integrable chiral Potts model. J. Phys. A Math. Theor. 44(44), 445005 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Yamazaki, M.: Quivers, YBE and 3-manifolds. JHEP 05, 147 (2012). arXiv:1203.5784

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Boll, R., Petrera, M., Suris, Y.B.: What is integrability of discrete variational systems? Proc. R. Soc. A 470, 20130550 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The majority of this work was completed while the author was an overseas researcher under Postdoctoral Fellowship of Japan Society for the Promotion of Science (JSPS), at the University of Tokyo, Komaba. The author thanks Atsuo Kuniba and Masahito Yamazaki for helpful discussions. Some of the n-component equations of Sect. 3.4 were presented at the 13th Symmetries and Integrability of Difference Equations (SIDE) conference, in Fukuoka, Japan, on November, 2018. The author thanks the organisers for the opportunity to give a talk at this conference, and also thanks the audience for their interest and feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew P. Kels.

Additional information

Communicated by Hal Tasaki.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Deformations for Vertex and IRF Formulations

Appendix: Deformations for Vertex and IRF Formulations

The cubic deformations in Figs. 20, 21, 22, 23, 24, and 25, are for the vertex and IRF models respectively, as defined in Sect. 2. These deformations are derived with use of the respective Yang–Baxter equations (12), and (8), and inversion relations (13), (9), and are used to show the extended Z-invariance property described in Sect. 2.3 for the vertex and IRF models.

Fig. 22
figure 22

A deformation in the vertex formulation that is equivalent to the Yang–Baxter equation (12)

Fig. 23
figure 23

A deformation in the IRF formulation corresponding to (A.2). Note that the rapidity lines which are not shown for two hidden four-squares on the right hand side are assigned according to Fig. 12

Fig. 24
figure 24

A deformation in the IRF formulation. Note that the rapidity lines which are not shown for the hidden four-square on the right hand side are assigned according to Fig. 12

Fig. 25
figure 25

A deformation in the IRF formulation that is equivalent to the Yang–Baxter equation (8)

For the case of the vertex formulation, the most complicated case is when changing one four-square into five four-squares, where two positively oriented rapidity lines r and \(r'\) are added/removed, as is shown in Fig. 20. Using the Yang–Baxter equation (12) and inversion relation (13), the contribution to the partition function of the right hand side of Fig. 20 is given by

$$\begin{aligned}&\displaystyle \sum _{x''_i,x'''_i,x''_j,x'''_j,x_k,x'_k,x''_k,x'''_k} \left\langle x''_i,x''_j\,|\,\mathbb {R}_{{\mathbf {{\mathsf {p}}}}{\mathbf {{\mathsf {q}}}}}\,|\,x'''_i,x'''_j \right\rangle \,\left\langle x_k,x_j\,|\,\mathbb {R}_{{\mathbf {{\mathsf {r}}}}{\mathbf {{\mathsf {q}}}}} \,|\,x'_k,x'_j\right\rangle \,\left\langle x'''_i,x'_k \,|\,\mathbb {R}_{{\mathbf {{\mathsf {p}}}}{\mathbf {{\mathsf {r}}}}}\,|\,x'_i,x''_k\right\rangle \nonumber \\&\qquad \displaystyle \times \left\langle x'''_j,x''_k \,|\,\mathbb {R}_{{\mathbf {{\mathsf {q}}}}{\mathbf {{\mathsf {r}}}}}\,|\,x'_j,x'''_k\right\rangle \, \left\langle x'''_k,x_i\,|\,\mathbb {R}_{{\mathbf {{\mathsf {r}}}}{\mathbf {{\mathsf {p}}}}} \,|\,x_k,x''_i\right\rangle \nonumber \\&\quad \displaystyle =\sum _{x''_i,x'''_j,x_k,x''_k,x'''_k} \;\sum _{\hat{x}_i,\hat{x}'_j,\hat{x}'''_k}\left\langle x'''_j,x''_k \,|\,\mathbb {R}_{{\mathbf {{\mathsf {q}}}}{\mathbf {{\mathsf {r}}}}}\,|\,x'_j,x'''_k\right\rangle \,\left\langle x'''_k,x_i\,|\,\mathbb {R}_{{\mathbf {{\mathsf {r}}}}{\mathbf {{\mathsf {p}}}}} \,|\,x_k,x''_i\right\rangle \nonumber \\&\qquad \displaystyle \times \left\langle \hat{x}'''_k,\hat{x}'_j \,|\,\mathbb {R}_{{\mathbf {{\mathsf {r}}}}{\mathbf {{\mathsf {q}}}}}\,|\,x''_k,x'''_j\right\rangle \,\left\langle x''_i,x_k\,|\,\mathbb {R}_{{\mathbf {{\mathsf {p}}}}{\mathbf {{\mathsf {r}}}}}\,|\,\hat{x}_i, \hat{x}'''_k\right\rangle \,\left\langle \hat{x}_i,x_j \,|\,\mathbb {R}_{{\mathbf {{\mathsf {p}}}}{\mathbf {{\mathsf {q}}}}}\,|\,x'_i,\hat{x}'_j\right\rangle \nonumber \\&\quad \displaystyle =\left\langle x_i,x_j\,|\,\mathbb {R}_{{\mathbf {{\mathsf {p}}}}{\mathbf {{\mathsf {q}}}}} \,|\,x'_i,x'_j\right\rangle \sum _{x'''_k}\delta _{x'''_k,x'''_k}. \end{aligned}$$
(A.1)

This shows that the contributions to the partition function of the left and right hand sides of Fig. 20 are equal, up to the constant factor \(\sum _{x'''_k}\delta _{x'''_k,x'''_k}\) (this is left here as a \(\delta \)-function, because when considering models with continuous valued spins, this becomes an infinite constant). A similar type of deformation not pictured here, that instead adds two negatively oriented rapidity lines r and \(r'\), may be shown to hold with an analogous calculation to (A.1). Similar calculations involving the Yang–Baxter equation (12) and inversion relation (13), can be used to show the equalities of Figs. 21 and 22, with the latter Figure only requiring a simple use of (12).

For the case of the IRF formulation, the most complicated case again involves changing one four-square into five four-squares, where the deformation adds two positively oriented rapidity lines r and \(r'\), as is depicted in Fig. 23. Using the Yang–Baxter equation (8) and inversion relation (9), the contribution to the partition function of the right hand side of Fig. 23 is given by

$$\begin{aligned}&\displaystyle \sum _{x'_a,x'_b,x'_c,x'_d}\mathbb {V}^{(1)}_{{\mathbf {{\mathsf {p}}}}{\mathbf {{\mathsf {q}}}}} (x'_a,x'_b,x'_c,x'_d)\,\mathbb {V}^{(1)}_{{\mathbf {{\mathsf {r}}}}{\mathbf {{\mathsf {q}}}}}(x'_c,x'_d,x_c,x_d) \,\mathbb {V}^{(1)}_{{\mathbf {{\mathsf {p}}}}{\mathbf {{\mathsf {r}}}}}(x'_b,x_b,x'_d,x_d)\,\mathbb {V}^{(2)}_{{\mathbf {{\mathsf {q}}}}{\mathbf {{\mathsf {r}}}}} (x'_a,x_a,x'_b,x_b)\nonumber \\&\qquad \displaystyle \times \mathbb {V}^{(2)}_{{\mathbf {{\mathsf {r}}}}{\mathbf {{\mathsf {p}}}}}(x'_a,x'_c,x_a,x_c) \, W_{qq'}(x_a,x'_a)\, W_{q'q}(x'_b,x_b)\, W_{q'q} (x'_c,x_c)\, W_{qq'} (x_d,x'_d)\nonumber \\&\quad \displaystyle =\sum _{x'_a,x'_b,x'_c}\sum _{\hat{x}_a} \mathbb {V}^{(2)}_{{\mathbf {{\mathsf {q}}}}{\mathbf {{\mathsf {r}}}}}(x'_a,x_a,x'_b,x_b)\,\mathbb {V}^{(2)}_{{\mathbf {{\mathsf {r}}}}{\mathbf {{\mathsf {p}}}}} (x'_a,x'_c,x_a,x_c)\, W_{qq'}(x_a,x'_a)\, W_{q'q}(x'_a,\hat{x}_a)\nonumber \\&\qquad \displaystyle \times \mathbb {V}^{(1)}_{{\mathbf {{\mathsf {r}}}}{\mathbf {{\mathsf {q}}}}}(x'_a,x'_b,\hat{x}_a,x_b) \,\mathbb {V}^{(1)}_{{\mathbf {{\mathsf {p}}}}{\mathbf {{\mathsf {r}}}}}(x'_a,\hat{x}_a,x'_c,x_c)\,\mathbb {V}^{(1)}_{{\mathbf {{\mathsf {p}}}}{\mathbf {{\mathsf {q}}}}} (\hat{x}_a,x_b,x_c,x_d)\nonumber \\&\quad \displaystyle =\mathbb {V}^{(1)}_{{\mathbf {{\mathsf {p}}}}{\mathbf {{\mathsf {q}}}}}(x_a,x_b,x_c,x_d) \sum _{x_a}\delta _{x_a,x_a}. \end{aligned}$$
(A.2)

This shows that the contributions to the partition function of the left and right hand sides of Fig. 23 are equal, up to the constant factor \(\left( \sum _{x_a}\delta _{x_a,x_a}\right) \). A similar type of deformation not pictured here, that instead adds two negatively oriented rapidity lines r and \(r'\), may be shown with an analogous calculation to (A.2). Similar calculations involving the Yang–Baxter equation (8) and inversion relation (9), can be used to show the equalities of Figs. 24 and 25, with the latter Figure only requiring a simple use of (8).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kels, A.P. Extended Z-Invariance for Integrable Vector and Face Models and Multi-component Integrable Quad Equations. J Stat Phys 176, 1375–1408 (2019). https://doi.org/10.1007/s10955-019-02346-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-019-02346-9

Keywords

Navigation