Skip to main content
Log in

Mesoscopic Description of the Adiabatic Piston: Kinetic Equations and \({\mathcal {H}}\)-Theorem

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The adiabatic piston problem is solved at the mesoscale using a kinetic theory approach. The problem is to determine the evolution towards equilibrium of two gases separated by a wall with only one degree of freedom (the adiabatic piston). A closed system of equations for the distribution functions of the gases conditioned to a position of the piston and the distribution function of the piston is derived, under the assumption of a generalized molecular chaos. It is shown that the resulting kinetic description has the canonical equilibrium as a steady-state solution. Moreover, the Boltzmann entropy, which includes the motion of the piston, verifies the \({\mathcal {H}}\)-theorem. The kinetic description is not limited to the thermodynamic limit nor to a small ratio between the masses of the particle and the piston, and collisions among particles are explicitly considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Callen, H.: Thermodynamics: physical theories of equilibrium thermodynamics and irreversible thermodynamics. Am. J. Phys. 28, 684 (1963)

    Article  ADS  Google Scholar 

  2. Curzon, A., Leff, H.S.: Resolution of an entropy maximization controversy. Am. J. Phys. 47(4), 385 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  3. Lieb, E.H.: Some problems in statistical mechanics that I would like to see solved. Phys. A 263(1–4), 491 (1999)

    Article  MathSciNet  Google Scholar 

  4. Landau, L.D., Lifshitz, E.M.: Course of Theoretical Physics. Elsevier, Amsterdam (2013)

    Google Scholar 

  5. Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics, Vol. I: The New Millennium Edition: Mainly Mechanics, Radiation, and Heat. Basic Books, New York (2011)

    Google Scholar 

  6. Glansdorff, P., Prigogine, I.: Thermodynamic Theory of Structure, Stability and Fluctuations, vol. 306. Wiley, New York (1971)

    MATH  Google Scholar 

  7. Chernov, N.I., Lebowitz, J., Sinai, Y.G.: Dynamics of a massive piston in an ideal gas. Russ. Math. Surv. 57(6), 1045 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. De Groot, S.R., Mazur, P.: Non-equilibrium Thermodynamics. Courier Corporation, North Chelmsford (2013)

    MATH  Google Scholar 

  9. Lieb, E.H., Yngvason, J.: Statistical Mechanics, pp. 353–363. Springer, New York (1998)

    Book  Google Scholar 

  10. Lieb, E.H., Yngvason, J.: The physics and mathematics of the second law of thermodynamics. Phys. Rep. 310(1), 1 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Chernov, N., Lebowitz, J.: Dynamics of a massive piston in an ideal gas: oscillatory motion and approach to equilibrium. J. Stat. Phys. 109(3–4), 507 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Sinai, Y.G.: Dynamics of a heavy particle surrounded by a finite number of light particles. Theor. Math. Phys. 121(1), 1351 (1999)

    Article  MATH  Google Scholar 

  13. Neishtadt, A., Sinai, Y.G.: Adiabatic piston as a dynamical system. J. Stat. Phys. 116(1–4), 815 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Wright, P.: The periodic oscillation of an adiabatic piston in two or three dimensions. Commun. Math. Phys. 275(2), 553 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gruber, C., Pache, S., Lesne, A.: Two-time-scale relaxation towards thermal equilibrium of the enigmatic piston. J. Stat. Phys. 112(5–6), 1177 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Caglioti, E., Chernov, N., Lebowitz, J.: Stability of solutions of hydrodynamic equations describing the scaling limit of a massive piston in an ideal gas. Nonlinearity 17(3), 897 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Holley, R.: The motion of a heavy particle in an infinite one dimensional gas of hard spheres. Proba. Theor. Relat. Fields 17(3), 181 (1971)

    MathSciNet  MATH  Google Scholar 

  18. Dürr, D., Goldstein, S., Lebowitz, J.: A mechanical model of Brownian motion. Commun. Math. Phys. 78(4), 507 (1981)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Gruber, C., Piasecki, J.: Stationary motion of the adiabatic piston. Phys. A 268(3–4), 412 (1999)

    Article  Google Scholar 

  20. Piasecki, J., Gruber, C.: From the adiabatic piston to macroscopic motion induced by fluctuations. Phys. A 265(3–4), 463 (1999)

    Article  Google Scholar 

  21. Gruber, C., Frachebourg, L.: On the adiabatic properties of a stochastic adiabatic wall: evolution, stationary non-equilibrium, and equilibrium states. Phys. A 272(3–4), 392 (1999)

    Article  Google Scholar 

  22. Piasecki, J.: Drift velocity induced by collisions. J. Stat. Phys. 104(5–6), 1145 (2001)

    Article  ADS  MATH  Google Scholar 

  23. Chernov, N.: Math. Phys. Electr. J. 10, Paper No. 2, 18 p. (2004). http://eudml.org/doc/124746

  24. Itami, M., Sasa, S.I.: Nonequilibrium statistical mechanics for adiabatic piston problem. J. Stat. Phys. 158(1), 37 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Piasecki, J.: A model of Brownian motion in an inhomogeneous environment. J. Phys. 14(40), 9265 (2002)

    MathSciNet  Google Scholar 

  26. Gruber, C., Pache, S.: The controversial piston in the thermodynamic limit. Phys. A 314(1–4), 345 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Gruber, C., Pache, S., Lesne, A.: Deterministic motion of the controversial piston in the thermodynamic limit. J. Stat. Phys. 108(3–4), 669 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gruber, C., Pache, S., Lesne, A.: On the second law of thermodynamics and the piston problem. J. Stat. Phys. 117(3–4), 739 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Lebowitz, J., Piasecki, J., Sinai, Y.: Scaling dynamics of a massive piston in an ideal gas. Springer, New York (2000)

    Book  MATH  Google Scholar 

  30. Chernov, N., Lebowitz, J., Sinai, Y.: Scaling dynamics of a massive piston in a cube filled with ideal gas: exact results. J. Stat. Phys. 109(3–4), 529 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Crosignani, B., Di Porto, P., Segev, M.: Approach to thermal equilibrium in a system with adiabatic constraints. Am. J. Phys. 64(5), 610 (1996)

    Article  ADS  Google Scholar 

  32. Gruber, C.: Thermodynamics of systems with internal adiabatic constraints: time evolution of the adiabatic piston. Eur. J. Phys. 20(4), 259 (1999)

    Article  MATH  Google Scholar 

  33. Cencini, M., Palatella, L., Pigolotti, S., Vulpiani, A.: Macroscopic equations for the adiabatic piston. Phys. Rev. E 76(5), 051103 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  34. Gislason, E.A.: A close examination of the motion of an adiabatic piston. Am. J. Phys. 78(10), 995 (2010)

    Article  ADS  Google Scholar 

  35. Mansour, M.M., Van den Broeck, C., Kestemont, E.: Hydrodynamic relaxation of the adiabatic piston. Europhys. Lett. 69(4), 510 (2005)

    Article  ADS  Google Scholar 

  36. Mansour, M.M., Garcia, A.L., Baras, F.: Hydrodynamic description of the adiabatic piston. Phys. Rev. E 73(1), 016121 (2006)

    Article  ADS  Google Scholar 

  37. Hurtado, P.I., Redner, S.: Simplest piston problem. I. Elastic collisions. Phys. Rev. E 73(1), 016136 (2006)

    Article  ADS  Google Scholar 

  38. White, J., Roman, F., Gonzalez, A., Velasco, S.: The “adiabatic” piston at equilibrium: spectral analysis and time-correlation function. Europhys. Lett. (EPL) 59(4), 479 (2002)

    Article  ADS  Google Scholar 

  39. Brey, J.J., Khalil, N.: An adiabatic piston in a temperature gradient. J. Stat. Mech. 2012(11), P11012 (2012)

    Article  Google Scholar 

  40. Kestemont, E., Van den Broeck, C., Mansour, M.M.: The “adiabatic” piston: and yet it moves. Europhys. Lett. (EPL) 49(2), 143 (2000)

    Article  ADS  Google Scholar 

  41. Foulaadvand, M.E., Shafiee, M.M.: One-dimensional Brownian motion in hard rods: the adiabatic piston problem. Europhys. Lett. (EPL) 104(3), 30002 (2013)

    Article  Google Scholar 

  42. Lechenault, F., Daniels, K.E.: Equilibration of granular subsystems. Soft Matter 6(13), 3074 (2010)

    Article  ADS  Google Scholar 

  43. Brey, J.J., Khalil, N.: Equilibration and symmetry breaking in vibrated granular systems. Europhys. Lett. (EPL) 94(1), 14003 (2011)

    Article  ADS  Google Scholar 

  44. Khalil, N.: Generalized time evolution of the homogeneous cooling state of a granular gas with positive and negative coefficient of normal restitution. J. Stat. Mech. 2018(4), 043210 (2018)

    Article  MathSciNet  Google Scholar 

  45. Brito, R., Renne, M., Van den Broeck, C.: Dissipative collapse of the adiabatic piston. Europhys. Lett. (EPL) 70(1), 29 (2005)

    Article  ADS  Google Scholar 

  46. Hurtado, P.I., Redner, S.: Simplest piston problem. II. Inelastic collisions. Phys. Rev. E 73(1), 016137 (2006)

    Article  ADS  Google Scholar 

  47. Brey, J.J., Khalil, N.: Critical behavior of two freely evolving granular gases separated by an adiabatic piston. Phys. Rev. E 82(5), 051301 (2010)

    Article  ADS  Google Scholar 

  48. Brey, J., Ruiz-Montero, M.: Heat flux and upper boundary condition in an open fluidized granular gas. Europhys. Lett. (EPL) 66(6), 805 (2004)

    Article  ADS  Google Scholar 

  49. Brey, J.J., Ruiz-Montero, M.: Velocity fluctuations of a piston confining a vibrated granular gas. J. Stat. Mech. 2008(09), L09002 (2008)

    Google Scholar 

  50. Brey, J.J., Ruiz-Montero, M.: Vibrated granular gas confined by a piston. Phys. Rev. E 79(3), 031305 (2009)

    Article  ADS  Google Scholar 

  51. Brey, J.J., Ruiz-Montero, M.: Volume fluctuations and compressibility of a vibrated granular gas. Phys. Rev. E 81(2), 021304 (2010)

    Article  ADS  Google Scholar 

  52. Pathria, R., Beale, P.D.: Statistical Mechanics. Elsevier, New York (2011)

    MATH  Google Scholar 

  53. Maynar, P., de Soria, M.G., Brey, J.J.: The Enskog equation for confined elastic hard spheres. J. Stat. Phys. 170(5), 999 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. McLennan, J.A.: Introduction to Nonequilibrium Statistical Mechanics. Prentice Hall, Upple Saddle River (1989)

    Google Scholar 

  55. Marconi, U.M.B., Puglisi, A., Vulpiani, A.: About an H-theorem for systems with non-conservative interactions. J. Stat. Mech. 2013(08), P08003 (2013)

    Article  MathSciNet  Google Scholar 

  56. de Soria, M.I.G., Maynar, P., Mischler, S., Mouhot, C., Rey, T., Trizac, E.: Towards an H-theorem for granular gases. J. Stat. Mech. 2015(11), P11009 (2015)

    Article  MathSciNet  Google Scholar 

  57. Plata, C., Prados, A.: Global stability and H theorem in lattice models with nonconservative interactions. Phys. Rev. E 95(5), 052121 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  58. Brito, R.: Clustering and collapse of a set of adiabatic pistons enclosing granular gases. Granul. Matter 14(2), 133 (2012)

    Article  Google Scholar 

  59. Caprini, L., Cerino, L., Sarracino, A., Vulpiani, A.: Fourier’s law in a generalized piston model. Entropy 19(7), 350 (2017)

    Article  ADS  Google Scholar 

  60. Cerino, L., Gradenigo, G., Sarracino, A., Villamaina, D., Vulpiani, A.: Fluctuations in partitioning systems with few degrees of freedom. Phys. Rev. E 89(4), 042105 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I dedicate this work to the memory of María José Ruiz Montero.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagi Khalil.

Additional information

Communicated by Abhishek Dhar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalil, N. Mesoscopic Description of the Adiabatic Piston: Kinetic Equations and \({\mathcal {H}}\)-Theorem. J Stat Phys 176, 1138–1160 (2019). https://doi.org/10.1007/s10955-019-02336-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-019-02336-x

Keywords

Mathematics Subject Classification

Navigation