Skip to main content
Log in

Markovian and Non-Markovian Dynamics in the One-Dimensional Transverse-Field XY Model

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider an anisotropic spin-1/2 XY Heisenberg chain in the presence of a transverse magnetic field. Selecting the nearest neighbor pair spins as an open quantum system, the rest of the chain plays the role of the structured environment. In fact, the aforementioned system is used as a quantum probe signifying nontrivial features of the environment with which is interacting. We use a general measure that is based on the trace distance for the degree of non-Markovian behavior in open quantum systems. The witness of non-Markovianity takes on nonzero values whenever there is a flow of information from the environment back to the open system. We have shown that the dynamics of the system with isotropic Heisenberg interaction is Markovian. A dynamical transition into the non-Markovian regime is observed as soon as the anisotropy, \(\gamma \), is applied. At the Ising value of the anisotropy \(\gamma =1.0\), all the information flows back from the environment to the system. The additional dynamical transition from the non-Markovian to the Markovian is obtained by applying the transverse magnetic field. In addition, we have focused on the time evolution of the Loschmidt-echo return rate function. It is found that a non-analyticity can be seen in the time evolution of the Loschmidt-echo return rate function exactly at the critical points where a dynamical transition from the Markovian to the non-Markovian occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  2. Breuer, H.P., Laine, E.M., Piilo, J., Vacchini, B.: Colloquium: Non-Markovian dynamics in open quantum systems. Rev. Mod. Phys. 88(2), 021002 (2016)

    Article  ADS  Google Scholar 

  3. Rivas, A., Huelga, S.F., Plenio, M.B.: Quantum non-Markovianity: characterization, quantification and detection. Rep. Prog. Phys. 77(9), 094001 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  4. Santos, M.F., Milman, P., Davidovich, L., Zagury, N.: Direct measurement of finite-time disentanglement induced by a reservoir. Phys. Rev. A 73(4), 040305 (2006)

    Article  ADS  Google Scholar 

  5. Bellomo, B., Franco, R.L., Compagno, G.: Non-Markovian effects on the dynamics of entanglement. Phys. Rev. Lett. 99(16), 160502 (2007)

    Article  ADS  Google Scholar 

  6. Bellomo, B., Franco, R.L., Compagno, G.: Entanglement dynamics of two independent qubits in environments with and without memory. Phys. Rev. A 77(3), 032342 (2008)

    Article  ADS  Google Scholar 

  7. Piilo, J., Maniscalco, S., Härkönen, K., Suominen, K.A.: Non-Markovian quantum jumps. Phys. Rev. Lett. 100(18), 180402 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Piilo, J., Härkönen, K., Maniscalco, S., Suominen, K.A.: Open system dynamics with non-Markovian quantum jumps. Phys. Rev. A 79(6), 062112 (2009)

    Article  ADS  MATH  Google Scholar 

  9. Apollaro, T.J., Di Franco, C., Plastina, F., Paternostro, M.: Memory-keeping effects and forgetfulness in the dynamics of a qubit coupled to a spin chain. Phys. Rev. A 83(3), 032103 (2011)

    Article  ADS  Google Scholar 

  10. Madsen, K.H., Ates, S., Lund-Hansen, T., Löffler, A., Reitzenstein, S., Forchel, A., Lodahl, P.: Observation of non-Markovian dynamics of a single quantum dot in a micropillar cavity. Phys. Rev. Lett. 106(23), 233601 (2011)

    Article  ADS  Google Scholar 

  11. Liu, B.H., Li, L., Huang, Y.F., Li, C.F., Guo, G.C., Laine, E.M., Breuer, H.P., Piilo, J.: Experimental control of the transition from Markovian to non-Markovian dynamics of open quantum systems. Nat. Phys. 7(12), 931–934 (2011)

    Article  Google Scholar 

  12. Franco, R.L., Bellomo, B., Andersson, E., Compagno, G.: Revival of quantum correlations without system-environment back-action. Phys. Rev. A 85(3), 032318 (2012)

    Article  ADS  Google Scholar 

  13. Huelga, S.F., Rivas, A., Plenio, M.B.: Non-Markovianity-assisted steady state entanglement. Phys. Rev. Lett. 108(16), 160402 (2012)

    Article  ADS  Google Scholar 

  14. Barnes, E., Cywiński, Ł., Sarma, S.D.: Nonperturbative master equation solution of central spin dephasing dynamics. Phys. Rev. Lett. 109(14), 140403 (2012)

    Article  ADS  Google Scholar 

  15. Haikka, P., Goold, J., McEndoo, S., Plastina, F., Maniscalco, S.: Non-Markovianity, Loschmidt echo, and criticality: a unified picture. Phys. Rev. A 85(6), 060101 (2012)

    Article  ADS  Google Scholar 

  16. Laine, E.M., Breuer, H.P., Piilo, J., Li, C.F., Guo, G.C.: Nonlocal memory effects in the dynamics of open quantum systems. Phys. Rev. Lett. 108(21), 210402 (2012)

    Article  ADS  Google Scholar 

  17. Franco, R.L., Bellomo, B., Maniscalco, S., Compagno, G.: Dynamics of quantum correlations in two-qubit systems within non-Markovian environments. Int. J. Mod. Phys. 27(01n03), 1345053 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Xu, J.S., Sun, K., Li, C.F., Xu, X.Y., Guo, G.C., Andersson, E., Franco, R.L., Compagno, G.: Experimental recovery of quantum correlations in absence of system-environment back-action. Nat. Commun. 4(1), 2851 (2013)

    Article  ADS  Google Scholar 

  19. Lorenzo, S., Plastina, F., Paternostro, M.: Tuning non-Markovianity by spin-dynamics control. Phys. Rev. A 87(2), 022317 (2013)

    Article  ADS  Google Scholar 

  20. Orieux, A., d’Arrigo, A., Ferranti, G., Franco, R.L., Benenti, G., Paladino, E., Falci, G., Sciarrino, F., Mataloni, P.: Experimental on-demand recovery of entanglement by local operations within non-Markovian dynamics. Sci. Rep. 5(1), 8575 (2015)

    Article  ADS  Google Scholar 

  21. Z̆nidaric̆, M., Pineda, C., Garcia-Mata, I.: Non-Markovian behavior of small and large complex quantum systems. Phys. Rev. Lett. 107(8), 080404 (2011)

    Article  Google Scholar 

  22. Lorenzo, S., Plastina, F., Paternostro, M.: Role of environmental correlations in the non-Markovian dynamics of a spin system. Phys. Rev. A 84(3), 032124 (2011)

    Article  ADS  Google Scholar 

  23. Mahmoudi, M., Mahdavifar, S., Zadeh, T.M.A., Soltani, M.R.: Non-Markovian dynamics in the extended cluster spin-1/2 XX chain. Phys. Rev. A 95(1), 012336 (2017)

    Article  ADS  Google Scholar 

  24. Breuer, H.P., Laine, E.M., Piilo, J.: Measure for the degree of non-Markovian behavior of quantum processes in open systems. Phys. Rev. Lett. 103(21), 210401 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  25. Breuer, H.P.: Foundations and measures of quantum non-Markovianity. J. Phys. B 45(15), 154001 (2012)

    Article  ADS  Google Scholar 

  26. Fetter, A.L., Walecka, J.D.: Quantum Theory of Many Particle System, vol. 34. McGraw-Hill Book Company, New York (1971)

    Google Scholar 

  27. Son, W., Amico, L., Fazio, R., Hamma, A., Pascazio, S., Vedral, V.: Quantum phase transition between cluster and antiferromagnetic states. EPL (Europhys. Lett.) 95(5), 50001 (2011)

    Article  ADS  Google Scholar 

  28. Heyl, M., Polkovnikov, A., Kehrein, S.: Dynamical quantum phase transitions in the transverse-field Ising model. Phys. Rev. Lett. 110(13), 135704 (2013)

    Article  ADS  Google Scholar 

  29. Heyl, M.: Dynamical quantum phase transitions: a review. Rep. Prog. Phys. 81(5), 054001 (2018)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors wish to thank R. Jafari for useful comments and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Saghafi.

Additional information

Communicated by Joel Lebowitz.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Here we try to calculate \(X^{+}_{mm'}\) which is related to the fermion operators as

$$\begin{aligned} X^{+}_{mm'}= & {} \langle a^{\dag }_{m}(t) a_{m}(t)\rangle \langle a^{\dag }_{m'}(t) a_{m'}(t)\rangle \nonumber \\&+\langle a^{\dag }_{m}(t) a_{m'}(t)\rangle \langle a_{m}(t)a^{\dag }_{m'}(t)\rangle . \end{aligned}$$
(21)

At first, the method of calculating \(\langle a^{\dag }_{m}(t) a_{m}(t)\rangle \) is explained.

$$\begin{aligned} \langle a^{\dag }_{m}(t) a_{m}(t)\rangle= & {} \langle \psi _0|e^{iHt}a^{\dag }_{m}a_{m}e^{-iHt}|\psi _0\rangle \nonumber \\= & {} \frac{1}{\sqrt{N}}\sum _{k}e^{i(k_1-k_2)m}\nonumber \\&\langle \psi _0|e^{iHt}a^{\dag }_{k_1}a_{k_2}e^{-iHt}|\psi _0\rangle \end{aligned}$$
(22)
$$\begin{aligned} e^{iHt}a^{\dag }_{k_1}e^{-iHt}= & {} e^{it\sum _{k}\varepsilon (k) (\beta _{k}^{\dagger }\beta _{k})/\hbar }(cos(k_1)\beta _{k_1}^{\dagger } \nonumber \\&+i sin(k_1)\beta _{-k_1})e^{-it\sum _{k}\varepsilon (k) (\beta _{k}^{\dagger }\beta _{k})/\hbar } \nonumber \\= & {} cos(k_1)e^{it\varepsilon (k_1)}\beta _{k_1}^{\dagger }\nonumber \\&+i sin(k_1)e^{-it\varepsilon (-k_1)}\beta _{-k_1} \end{aligned}$$
(23)

In the same way one can show

$$\begin{aligned} e^{iHt}a_{k_2}e^{-iHt}= & {} cos(k_2)e^{-it\varepsilon (k_2)}\beta _{k_2}^{\dagger }\nonumber \\&-isin(k_2)e^{it\varepsilon (-k_2)}\beta _{-k_2}^{\dagger }. \end{aligned}$$
(24)

The relation 22 is simplified as follows

$$\begin{aligned} \langle a^{\dag }_{m}(t) a_{m}(t)\rangle&=\frac{1}{\sqrt{N}}\sum _{k}e^{i(k_1-k_2)m}\nonumber \\&\quad \langle \psi _0|(cos(k_1)e^{it\varepsilon (k_1)}\beta _{k_1}^{\dagger }\nonumber \\&\quad +i sin(k_1)e^{-it\varepsilon (-k_1)}\beta _{-k_1}) \nonumber \\&\quad (cos(k_2)e^{-it\varepsilon (k_2)}\beta _{k_2}^{\dagger }\nonumber \\&\quad -isin(k_2)e^{it\varepsilon (-k_2)}\beta _{-k_2}^{\dagger })|\psi _0\rangle . \end{aligned}$$
(25)

Using the Bogoliubov operators

$$\begin{aligned} \langle a^{\dag }_{m}(t) a_{m}(t)\rangle= & {} \frac{1}{2 N^2}\sum _{k,k'}(1+e^{i(k+\phi )}+e^{-i(k'+\phi ))}\\&+e^{i(k-k')})\\&(e^{-it(\varepsilon (k)-\varepsilon (k'))}cos^2(k)cos^2(k')\\&+e^{it(\varepsilon (k)+\varepsilon (k'))}sin^2(k)cos^2(k')\\&+e^{-it(\varepsilon (k)+\varepsilon (k'))}sin^2(k')cos^2(k)\\&+ e^{it(\varepsilon (k)-\varepsilon (k'))}sin^2(k)sin^2(k')\\&+\frac{1}{4}sin(2k)sin(2k')(-e^{it(\varepsilon (k)-\varepsilon (k'))}\\&+e^{it(\varepsilon (k)+\varepsilon (k'))}\\&+e^{-it(\varepsilon (k)+\varepsilon (k'))}-e^{-it(\varepsilon (k)-\varepsilon (k'))}))\\&+ \frac{1}{4 N^2}\sum _{k,k'}(sin^2(2k') (1+cos(k+\phi ))\\&(2-e^{2it(\varepsilon (k')}-e^{-2it(\varepsilon (k')}) \end{aligned}$$

Similarly, \(\langle a^{\dag }_{m}(t) a_{m+1}(t)\rangle \) can be written as follows

$$\begin{aligned} \langle a^{\dag }_{m}(t) a_{m+1}(t)\rangle= & {} \frac{1}{2 N^2}\sum _{k,k'}(1+e^{i(k+\phi )}+e^{-i(k'+\phi ))}\nonumber \\&+e^{i(k-k')}) e^{-ik}\nonumber \\&(e^{-it(\varepsilon (k)-\varepsilon (k'))}cos^2(k)cos^2(k')\nonumber \\&+e^{it(\varepsilon (k)+\varepsilon (k'))}sin^2(k)cos^2(k')\nonumber \\&+e^{-it(\varepsilon (k)+\varepsilon (k'))}sin^2(k')cos^2(k)\nonumber \\&+e^{it(\varepsilon (k)-\varepsilon (k'))}sin^2(k)sin^2(k')\nonumber \\&+\frac{1}{4}e^{ik'}sin(2k)sin(2k')(-e^{it(\varepsilon (k)-\varepsilon (k'))}\nonumber \\&+e^{it(\varepsilon (k)+\varepsilon (k'))}\nonumber \\&+e^{-it(\varepsilon (k)+\varepsilon (k'))}-e^{-it(\varepsilon (k)-\varepsilon (k'))}))\nonumber \\&+ \frac{1}{4 N^2}\sum _{k,k'}(sin^2(2k')\nonumber \\&(1+cos(k+\phi ))e^{-ik'}(2-e^{2it(\varepsilon (k')}-e^{-2it(\varepsilon (k')}) \end{aligned}$$
(26)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saghafi, Z., Mahdavifar, S. & Hosseini Lapasar, E. Markovian and Non-Markovian Dynamics in the One-Dimensional Transverse-Field XY Model. J Stat Phys 176, 492–504 (2019). https://doi.org/10.1007/s10955-019-02309-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-019-02309-0

Keywords

Navigation