Skip to main content
Log in

Statistical Mechanical Expressions of Slip Length

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We provide general derivations of the partial slip boundary condition from microscopic dynamics and linearized fluctuating hydrodynamics. The derivations are based on the assumption of separation of scales between microscopic behavior, such as collision of particles, and macroscopic behavior, such as relaxation of fluid to global equilibrium. These derivations lead to several statistical mechanical expressions of the slip length, which are classified into two types. The expression in the first type is given as a local transport coefficient, which is related to the linear response theory that describes the relaxation process of the fluid. The second type is related to the linear response theory that describes the non-equilibrium steady state and the slip length is given as combination of global transport coefficients, which are dependent on macroscopic lengths such as a system size. Our derivations clarify that the separation of scales must be seriously considered in order to distinguish the expressions belonging to two types. Based on these linear response theories, we organize the relationship among the statistical mechanical expressions of the slip length suggested in previous studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Neto, C., Evans, D.R., Bonaccurso, E., Butt, H.J., Craig, V.S.J.: Boundary slip in newtonian liquids: a review of experimental studies. Rep. Prog. Phys. 68(12), 2859 (2005)

    Article  ADS  Google Scholar 

  2. Lauga, E., Brenner, M.P., Stone, H.A.: Microfluidics: the no-slip boundary condition. In: Springer Handbook of Experimental Fluid Mechanics, pp. 1219–1240. Springer (2007)

  3. Cao, B.Y., Sun, J., Chen, M., Guo, Z.Y.: Molecular momentum transport at fluid-solid interfaces in mems/nems: a review. Int. J. Mol. Sci. 10(11), 4638–4706 (2009)

    Article  Google Scholar 

  4. Bocquet, L., Charlaix, E.: Nanofluidics, from bulk to interfaces. Chem. Soc. Rev. 39(3), 1073–1095 (2010)

    Article  Google Scholar 

  5. Pit, R., Hervet, H., Leger, L.: Direct experimental evidence of slip in hexadecane: solid interfaces. Phys. Rev. Lett. 85(5), 980 (2000)

    Article  ADS  Google Scholar 

  6. Zhu, Y., Granick, S.: Rate-dependent slip of newtonian liquid at smooth surfaces. Phys. Rev. Lett. 87(9), 096105 (2001)

    Article  ADS  Google Scholar 

  7. Zhu, Y., Granick, S.: Limits of the hydrodynamic no-slip boundary condition. Phys. Rev. Lett. 88(10), 106102 (2002)

    Article  ADS  Google Scholar 

  8. Cottin-Bizonne, C., Cross, B., Steinberger, A., Charlaix, E.: Boundary slip on smooth hydrophobic surfaces: intrinsic effects and possible artifacts. Phys. Rev. Lett. 94(5), 056102 (2005)

    Article  ADS  Google Scholar 

  9. Maali, A., Cohen-Bouhacina, T., Kellay, H.: Measurement of the slip length of water flow on graphite surface. Appl. Phys. Lett. 92(5), 053101 (2008)

    Article  ADS  Google Scholar 

  10. Vinogradova, O.I., Koynov, K., Best, A., Feuillebois, F.: Direct measurements of hydrophobic slippage using double-focus fluorescence cross-correlation. Phys. Rev. Lett. 102(11), 118302 (2009)

    Article  ADS  Google Scholar 

  11. Thompson, P.A., Troian, S.M.: A general boundary condition for liquid flow at solid surfaces. Nature 389(6649), 360 (1997)

    Article  ADS  Google Scholar 

  12. Gupta, S., Cochran, H., Cummings, P.: Shear behavior of squalane and tetracosane under extreme confinement. i. model, simulation method, and interfacial slip. J. Chem. Phys. 107(23), 10316–10326 (1997)

    Article  ADS  Google Scholar 

  13. Barrat, J.L., Bocquet, L.: Large slip effect at a nonwetting fluid-solid interface. Phys. Rev. Lett. 82(23), 4671 (1999)

    Article  ADS  Google Scholar 

  14. Cieplak, M., Koplik, J., Banavar, J.R.: Boundary conditions at a fluid-solid interface. Phys. Rev. Lett. 86(5), 803 (2001)

    Article  ADS  Google Scholar 

  15. Landau, L., Lifshitz, E.: Course of Theoretical Physics. vol. 6: Fluid Mechanics. London (1959)

  16. Vinogradova, O.I.: Drainage of a thin liquid film confined between hydrophobic surfaces. Langmuir 11(6), 2213–2220 (1995)

    Article  Google Scholar 

  17. Navier, C.L.M.H.: Memoire sur les du mouvement des fluides. Mem. Académie des Inst. Sciences Fr. 6, 389–416 (1823)

    Google Scholar 

  18. Lamb, H.: Hydrodynamics. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  19. Happel, J., Brenner, H.: Low Reynolds Number Hydrodynamics: With Special Applications to Particulate Media, vol. 1. Springer, New York (2012)

    MATH  Google Scholar 

  20. Cottin-Bizonne, C., Barrat, J.L., Bocquet, L., Charlaix, E.: Low-friction flows of liquid at nanopatterned interfaces. Nat. Mater. 2(4), 237 (2003)

    Article  ADS  Google Scholar 

  21. Priezjev, N.V., Troian, S.M.: Influence of periodic wall roughness on the slip behaviour at liquid/solid interfaces: molecular-scale simulations versus continuum predictions. J. Fluid Mech. 554, 25–46 (2006)

    Article  ADS  MATH  Google Scholar 

  22. Lee, T., Charrault, E., Neto, C.: Interfacial slip on rough, patterned and soft surfaces: a review of experiments and simulations. Adv. Colloid Interface Sci. 210, 21–38 (2014)

    Article  Google Scholar 

  23. Barrat, J.L., Bocquet, L.: Influence of wetting properties on hydrodynamic boundary conditions at a fluid/solid interface. Faraday Discuss. 112, 119–128 (1999)

    Article  ADS  Google Scholar 

  24. Huang, D.M., Sendner, C., Horinek, D., Netz, R.R., Bocquet, L.: Water slippage versus contact angle: a quasiuniversal relationship. Phys. Rev. Lett. 101(22), 226101 (2008)

    Article  ADS  Google Scholar 

  25. Voronov, R.S., Papavassiliou, D.V., Lee, L.L.: Review of fluid slip over superhydrophobic surfaces and its dependence on the contact angle. Ind. Eng. Chem. Res. 47(8), 2455–2477 (2008)

    Article  Google Scholar 

  26. Kirkwood, J.G.: The statistical mechanical theory of transport processes i. general theory. J. Chem. Phys. 14(3), 180–201 (1946)

    Article  ADS  Google Scholar 

  27. Kirkwood, J.G., Buff, F.P., Green, M.S.: The statistical mechanical theory of transport processes. iii. the coefficients of shear and bulk viscosity of liquids. J. Chem. Phys. 17(10), 988–994 (1949)

    Article  ADS  Google Scholar 

  28. Irving, J., Kirkwood, J.G.: The statistical mechanical theory of transport processes. iv. the equations of hydrodynamics. J. Chem. Phys. 18(6), 817–829 (1950)

    Article  ADS  MathSciNet  Google Scholar 

  29. Green, M.S.: Markoff random processes and the statistical mechanics of time-dependent phenomena. ii. irreversible processes in fluids. J. Chem. Phys. 22(3), 398–413 (1954)

    Article  ADS  MathSciNet  Google Scholar 

  30. Mori, H.: Statistical-mechanical theory of transport in fluids. Phys. Rev. 112(6), 1829 (1958)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Kawasaki, K., Gunton, J.D.: Theory of nonlinear transport processes: nonlinear shear viscosity and normal stress effects. Phys. Rev. A 8(4), 2048 (1973)

    Article  ADS  Google Scholar 

  32. Zubarev, D., Morozov, V.: Statistical Mechanics of Nonequilibrium Processes. Akademie Verlag, Berlin (1996)

    MATH  Google Scholar 

  33. Sasa, Si: Derivation of hydrodynamics from the hamiltonian description of particle systems. Phys. Rev. Lett. 112(10), 100602 (2014)

    Article  ADS  Google Scholar 

  34. Hongo, M.: Nonrelativistic hydrodynamics from quantum field theory: (i) normal fluid composed of spinless schrödinger fields. J. Stat. Phys. pp. 1–42 (2018)

  35. Bocquet, L., Barrat, J.L.: Hydrodynamic boundary conditions, correlation functions, and kubo relations for confined fluids. Phys. Rev. E 49(4), 3079 (1994)

    Article  ADS  Google Scholar 

  36. Fuchs, M., Kroy, K.: Statistical mechanics derivation of hydrodynamic boundary conditions: the diffusion equation. J. Phys. 14(40), 9223 (2002)

    Google Scholar 

  37. Petravic, J., Harrowell, P.: On the equilibrium calculation of the friction coefficient for liquid slip against a wall. J. Chem. Phys. 127(17), 174706 (2007)

    Article  ADS  Google Scholar 

  38. Kobryn, A.E., Kovalenko, A.: Molecular theory of hydrodynamic boundary conditions in nanofluidics. J. Chem. Phys. 129(13), 134701 (2008)

    Article  ADS  Google Scholar 

  39. Hansen, J.S., Todd, B., Daivis, P.J.: Prediction of fluid velocity slip at solid surfaces. Phys. Rev. E 84(1), 016313 (2011)

    Article  ADS  Google Scholar 

  40. Huang, K., Szlufarska, I.: Green-kubo relation for friction at liquid-solid interfaces. Phys. Rev. E 89(3), 032119 (2014)

    Article  ADS  Google Scholar 

  41. Ramos-Alvarado, B., Kumar, S., Peterson, G.: Hydrodynamic slip length as a surface property. Phys. Rev. E 93(2), 023101 (2016)

    Article  ADS  Google Scholar 

  42. Nakamura, Y., Yoshimori, A., Akiyama, R.: Perturbation theory of large-particle diffusion in a binary solvent mixture. J. Phys. Soc. Jpn. 83(6), 064601 (2014)

    Article  ADS  Google Scholar 

  43. Nakamura, Y., Yoshimori, A., Akiyama, R., Yamaguchi, T.: Stick boundary condition at large hard sphere arising from effective attraction in binary hard-sphere mixtures. J. Chem. Phys. 148(12), 124502 (2018)

    Article  ADS  Google Scholar 

  44. Bocquet, L., Barrat, J.L.: On the green-kubo relationship for the liquid-solid friction coefficient. J. Chem. Phys. 139(4), 044704 (2013)

    Article  ADS  Google Scholar 

  45. Zwanzig, R.: Hydrodynamic fluctuations and stokes law friction. J. Res. Natl. Bur. Std.(US) B 68, 143–145 (1964)

    MathSciNet  MATH  Google Scholar 

  46. Bedeaux, D., Mazur, P.: Brownian motion and fluctuating hydrodynamics. Physica 76(2), 247–258 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  47. Itami, M., Sasa, Si: Derivation of stokes law from kirkwoods formula and the green-kubo formula via large deviation theory. J. Stat. Phys. 161(3), 532–552 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Itami, M., Sasa, Si: Singular behaviour of time-averaged stress fluctuations on surfaces. J. Stat. Mech. 2018(12), 123210 (2018)

    Article  MathSciNet  Google Scholar 

  49. Priezjev, N.V., Troian, S.M.: Molecular origin and dynamic behavior of slip in sheared polymer films. Phys. Rev. Lett. 92(1), 018302 (2004)

    Article  ADS  Google Scholar 

  50. Falk, K., Sedlmeier, F., Joly, L., Netz, R.R., Bocquet, L.: Molecular origin of fast water transport in carbon nanotube membranes: superlubricity versus curvature dependent friction. Nano Lett. 10(10), 4067–4073 (2010)

    Article  ADS  Google Scholar 

  51. Priezjev, N.V.: Relationship between induced fluid structure and boundary slip in nanoscale polymer films. Phys. Rev. E 82(5), 051603 (2010)

    Article  ADS  Google Scholar 

  52. Jarzynski, C.: Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78(14), 2690 (1997)

    Article  ADS  Google Scholar 

  53. Crooks, G.E.: Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Phys. Rev. E 60(3), 2721 (1999)

    Article  ADS  Google Scholar 

  54. Seifert, U.: Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys. 75(12), 126001 (2012)

    Article  ADS  Google Scholar 

  55. Nakano, H., Sasa, Si: Microscopic determination of macroscopic boundary conditions in newtonian liquids. Phys. Rev. E 99(1), 013106 (2019)

    Article  ADS  Google Scholar 

  56. Monahan, C., Naji, A., Horgan, R., Lu, B.S., Podgornik, R.: Hydrodynamic fluctuation-induced forces in confined fluids. Soft Matter 12(2), 441–459 (2016)

    Article  ADS  Google Scholar 

  57. Kim, S., Karrila, S.J.: Microhydrodynamics: Principles and Selected Applications. Courier Corporation, Chelmsford (2013)

    Google Scholar 

  58. Schwinger, J., DeRaad Jr., L.L., Milton, K., Tsai, Wy: Classical Electrodynamics. Westview Press, Boulder (1998)

    Google Scholar 

  59. Mazenko, G.F.: Nonequilibrium Statistical Mechanics. Wiley, New York (2008)

    MATH  Google Scholar 

  60. Das, S.P.: Statistical Physics of Liquids at Freezing and Beyond. Cambridge University Press, Cambridge (2011)

    Book  Google Scholar 

  61. Lagar’kov, A.N., Sergeev, V.M.: Molecular dynamics method in statistical physics. Soviet Physics Uspekhi 21(7), 566 (1978)

    Article  ADS  Google Scholar 

  62. Español, P., Zúñiga, I.: Force autocorrelation function in brownian motion theory. J. Chem. Phys. 98(1), 574–580 (1993)

    Article  ADS  Google Scholar 

  63. Forster, D., Nelson, D.R., Stephen, M.J.: Large-distance and long-time properties of a randomly stirred fluid. Phys. Rev. A 16(2), 732 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  64. Wolynes, P.G.: Hydrodynamic boundary conditions and mode-mode coupling theory. Phys. Rev. A 13(3), 1235 (1976)

    Article  ADS  Google Scholar 

  65. Nieuwoudt, J., Kirkpatrick, T., Dorfman, J.: Long-range boundary effects in simple fluids. J. Stat. Phys. 34(1–2), 203–223 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  66. Schmatko, T., Hervet, H., Leger, L.: Friction and slip at simple fluid-solid interfaces: the roles of the molecular shape and the solid-liquid interaction. Phys. Rev Lett. 94(24), 244501 (2005)

    Article  ADS  Google Scholar 

  67. Ulmanella, U., Ho, C.M.: Molecular effects on boundary condition in micro/nanoliquid flows. Phys. Fluids 20(10), 101512 (2008)

    Article  ADS  MATH  Google Scholar 

  68. Joseph, P., Cottin-Bizonne, C., Benoit, J.M., Ybert, C., Journet, C., Tabeling, P., Bocquet, L.: Slippage of water past superhydrophobic carbon nanotube forests in microchannels. Phys. Rev. Lett. 97(15), 156104 (2006)

    Article  ADS  Google Scholar 

  69. Lee, C., Choi, C.H., Kim, C.J.: Structured surfaces for a giant liquid slip. Phys. Rev. Lett. 101(6), 064501 (2008)

    Article  ADS  Google Scholar 

  70. Martini, A., Hsu, H.Y., Patankar, N.A., Lichter, S.: Slip at high shear rates. Phys. Rev. Lett. 100(20), 206001 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank A. Yoshimori, M. Itami and Y. Minami for helpful comments. The present study was supported by KAKENHI (Nos. 17H01148).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyoshi Nakano.

Additional information

Communicated by Abishek Dhar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Technical Details of the Calculation of \(C_{AA}(\omega )\)

In the calculation of (171), we detail how to proceed from the first to the second line. We perform an integration by parts

$$\begin{aligned}&\int _{0}^{\mathcal {L}} dz_2 \int _{0}^{\mathcal {L}} dz'_2 G(z,z_2,\omega ) G(z',z'_2,-\omega ) \partial _{z_2} \partial _{z'_2} \delta (z_2-z'_2) \nonumber \\&\quad = \Big [\int _{0}^{\mathcal {L}} dz_2 G(z,z_2,\omega ) G(z',z'_2,-\omega ) \partial _{z_2} \delta (z_2-z'_2) \Big ]_{z'_2=0}^{z'_2=\mathcal {L}}\nonumber \\&\qquad -\int _{0}^{\mathcal {L}} dz_2 \int _{0}^{\mathcal {L}} dz'_2 G(z,z_2,\omega ) \partial _{z'_2} G(z',z'_2,-\omega ) \partial _{z_2} \delta (z_2-z'_2) \nonumber \\&\quad =\Big [G(z,z_2,\omega ) G(z',\mathcal {L},-\omega ) \delta (z_2-\mathcal {L}) \Big ]_{z_2=0}^{z_2=\mathcal {L}}\nonumber \\&\qquad -\int _{0}^{\mathcal {L}} dz_2 \partial _{z_2}G(z,z_2,\omega ) G(z',\mathcal {L},-\omega ) \delta (z_2-\mathcal {L}) \nonumber \\&\qquad - \Big [G(z,z_2,\omega ) G(z',0,-\omega ) \delta (z_2-0) \Big ]_{z_2=0}^{z_2=\mathcal {L}} \nonumber \\&\qquad + \int _{0}^{\mathcal {L}} dz_2 \partial _{z_2}G(z,z_2,\omega ) G(z',0,-\omega ) \delta (z_2-0)\nonumber \\&\qquad -\int _{0}^{\mathcal {L}} dz'_2 G(z,\mathcal {L},\omega ) \partial _{z'_2} G(z',z'_2,-\omega ) \delta (\mathcal {L}-z'_2)\nonumber \\&\qquad +\int _{0}^{\mathcal {L}} dz'_2 G(z,0,\omega ) \partial _{z'_2} G(z',z'_2,-\omega ) \delta (0-z'_2) \nonumber \\&\qquad +\int _{0}^{\mathcal {L}} dz_2 \int _{0}^{\mathcal {L}} dz'_2 \partial _{z_2} G(z,z_2,\omega ) \partial _{z'_2} G(z',z'_2,-\omega ) \delta (z_2-z'_2). \end{aligned}$$
(A.1)

The last expression contains integrals of the delta function weighted only at the edge of the integration range. These integrals are calculated using the property:

$$\begin{aligned} \int _0^{\mathcal {L}} dz \delta (z) = \frac{1}{2}. \end{aligned}$$
(A.2)

The Integration of the delta functions in (A.2) yields the second line of (171).

Appendix B: Sketch of the Derivation of (195) and (196)

We sketch the derivation of (195) and (196). We introduce the time correlation functions \(C_{v\alpha }(z,t,t')\) as

$$\begin{aligned} C_{v\alpha }(z,t,t') \equiv \langle \tilde{\mathcal {V}}^{x}(z,t) \tilde{\mathcal {F}}_{\alpha }(t') \rangle , \end{aligned}$$
(B.1)

where \(\alpha =A,B\). Equations (195) and (196) are written in terms of \(C_{v\alpha }(z,t,t')\) as

$$\begin{aligned} \frac{1}{k_B T A_{xy}} \int _{0}^{\infty } dt C_{vA}(z,t,0) =\left( 1-\frac{z}{\mathcal {L}} +\frac{\mathcal {B}_B}{\mathcal {L}}\right) +\left( 1-\frac{z}{\mathcal {L}}\right) \left( \frac{\mathcal {B}_A}{\mathcal {L}} +\frac{\mathcal {B}_B}{\mathcal {L}}\right) + o(\epsilon ),\nonumber \\ \end{aligned}$$
(B.2)

and

$$\begin{aligned} \frac{1}{k_B T A_{xy}} \int _{0}^{\infty } dt C_{vB}(z,t,0) =\left( \frac{z}{\mathcal {L}}+\frac{\mathcal {B}_A}{\mathcal {L}}\right) -\frac{z}{\mathcal {L}}\left( \frac{\mathcal {B}_A}{\mathcal {L}} + \frac{\mathcal {B}_B}{\mathcal {L}}\right) + o(\epsilon ). \end{aligned}$$
(B.3)

Since \(C_{v\alpha }(z,t,0)\) is the correlation function between the odd and even quantities under time reversal, the equality

$$\begin{aligned} C_{v\alpha }(z,t,0) = -C_{v\alpha }(z,-t,0) \end{aligned}$$
(B.4)

holds. This is in contrast to \(C_{\alpha \beta }(t,0) \ (\alpha ,\beta =A, B)\), which satisfies

$$\begin{aligned} C_{\alpha \beta }(t,0) = C_{\alpha \beta }(-t,0). \end{aligned}$$
(B.5)

Because of this property, we have

$$\begin{aligned} \lim _{\omega \rightarrow 0} C_{v\alpha }(z,\omega ) = \lim _{\omega \rightarrow 0} \int _{-\infty }^{\infty } dt C_{v\alpha }(z,t,0)e^{i\omega t} = 0. \end{aligned}$$
(B.6)

Therefore, we cannot repeat the calculation of (191) in deriving (B.2) and (B.3). We calculate (B.2) and (B.3) using the following steps. First, we calculate the Fourier transform \(C_{v\alpha }(z,\omega )\) and obtain the real-time correlation function in the form

$$\begin{aligned} C_{v\alpha }(z,t,0) = \int \frac{d\omega }{2\pi } C_{v \alpha }(z,\omega )e^{-i\omega t}. \end{aligned}$$
(B.7)

Next, we perform the integral in (B.7). Here, we assume that main contribution of \(C_{v\alpha }(z,t,0)\) in (B.2) and (B.3) comes from the region \(\omega \simeq 0\). Finally, using this result, we calculate the time integral on the left-hand side of (B.2) and (B.3).

We focus on (B.2). \(C_{vA}(z,\omega )\) is written in terms of the Green function as

$$\begin{aligned} \frac{C_{vA}(z;\omega )}{2k_B TA_{xy}}&= \eta \partial _{z_2} G(z,+0;\omega ) - \eta ^2 \int _0^{\mathcal {L}} dz_2 \partial _{z_2} G(z,z_2;\omega ) \partial _{z} \partial _{z_2} G(+0,z_2;-\omega )\nonumber \\&\quad - \eta ^2 G(z,0;\omega ) \partial _{z}\partial _{z_2} G(+0,0;-\omega ) +\eta ^2 G(z,\mathcal {L};\omega ) \partial _{z} \partial _{z_2} G(+0,\mathcal {L};-\omega ) ,\nonumber \\ \end{aligned}$$
(B.8)

where we ignore terms proportional to \(\delta (0)\), such as the fourth line of (174). The leading contribution of the Green function in \(\omega \) is expressed as

$$\begin{aligned} G(z,z_2;\omega ) \simeq \frac{(\mathcal {L}+\mathcal {B}_B-z) (\mathcal {B}_A+z_2)}{\eta (\mathcal {B}_A+\mathcal {B}_B+\mathcal {L})-i\omega \rho c} \end{aligned}$$
(B.9)

for \(z>z_2\), and

$$\begin{aligned} G(z,z_2;\omega ) \simeq \frac{(1+\mathcal {B}_B-z_2)(\mathcal {B}_A+z)}{\eta (\mathcal {B}_A+\mathcal {B}_B+\mathcal {L})-i\omega \rho c} \end{aligned}$$
(B.10)

for \(z<z_2\), with

$$\begin{aligned} c \equiv \mathcal {B}_A \mathcal {B}_B \mathcal {L} + \frac{1}{2} (\mathcal {B}_A+\mathcal {B}_B) \mathcal {L}^2 + \frac{1}{6} \mathcal {L}^3. \end{aligned}$$
(B.11)

We consider the first term of (B.8). Substituting (B.9) and (B.10) into the first term of (B.8) produces

$$\begin{aligned} \eta \partial _{z_2} G(z,+0;\omega ) \simeq - \frac{\eta }{i\rho c} \frac{\mathcal {L}+\mathcal {B}_B-z}{\omega -\frac{\eta (\mathcal {B}_A +\mathcal {B}_B+\mathcal {L})}{i\rho c}}. \end{aligned}$$
(B.12)

Next, after performing the integral in \(\omega \), we obtain

$$\begin{aligned} \eta \int \frac{d\omega }{2\pi } \partial _{z_2} G(z,+0;\omega ) e^{-i\omega t} = \frac{\eta (\mathcal {L}+\mathcal {B}_B-z)}{\rho c} e^{-t\frac{\eta (\mathcal {L}+\mathcal {B}_A+\mathcal {B}_B)}{\rho c}}, \end{aligned}$$
(B.13)

which is a part of \(C_{vA}(z,t,0)/2k_B TA_{xy}\) obtained from the first term of (B.8). Finally, integrating the right-hand side of (B.13) in t gives

$$\begin{aligned} \int _0^{\infty } dt \frac{\eta (\mathcal {L}+\mathcal {B}_B-z)}{\rho c} e^{-t\frac{\eta (\mathcal {L}+\mathcal {B}_A+\mathcal {B}_B)}{\rho c}} =\frac{\mathcal {L}+\mathcal {B}_B-z}{\mathcal {L}+\mathcal {B}_A+\mathcal {B}_B}. \end{aligned}$$
(B.14)

We calculate the remaining terms of (B.8) in the same manner. By collecting these results and extracting the first order terms in \(\epsilon \), we obtain (B.2). Finally, we note that (B.3) is obtained by a similar procedure.

Appendix C: Derivation of (221) from the Linearized Fluctuating Dynamics

In this Appendix, we show a proof of (221) by employing the model in Sect. 7.

In our model, the average velocity of the particles in the slab, \(\hat{u}^x_{slab}(\varGamma )\), is replaced with the fluid velocity near the wall, \(\tilde{\mathcal {V}}^x(+0,t)\). Based on this, we transform (221) to the expression with respect to frequency. By recalling that

$$\begin{aligned} \lim _{\omega \rightarrow 0} A(\omega ) = \int _0^{\infty } ds A(s), \end{aligned}$$
(C.1)

where A(t) is any function and \(A(\omega )\) is the Fourier transform of A(t), (221) is rewritten as

$$\begin{aligned} \frac{\eta }{b_A^{HTD}} = \frac{\lim _{\omega \rightarrow 0}D_{vA}(+0,\omega )}{\lim _{\omega \rightarrow 0}D_{vv}(+0,\omega )}, \end{aligned}$$
(C.2)

where \(D_{vA}(z,\omega )\) is defined by (B.7) and \(D_{vv}(z,\omega )\) is given by

$$\begin{aligned} D_{vv}(z,\omega ) = \int _0^{\infty } dt \langle \tilde{\mathcal {V}}^{x}(z,t) \tilde{\mathcal {V}}^{x}(z,0) \rangle e^{i\omega t}. \end{aligned}$$
(C.3)

In Appendix B, \(\lim _{\omega \rightarrow 0}D_{vA}(+0,\omega )\) is calculated as

$$\begin{aligned} \lim _{\omega \rightarrow 0}\frac{D_{vA}(+0,\omega )}{k_B T A_{xy}} =\frac{\mathcal {L}+\mathcal {B}_B}{\mathcal {L}+\mathcal {B}_A+\mathcal {B}_B}, \end{aligned}$$
(C.4)

where we have ignored the terms proportional to \(\delta (0)\). Then, we calculate \(D_{vv}(z,\omega )\) in \(\omega \rightarrow 0\). The leading contribution of the Green function in \(\omega \rightarrow 0\) is expressed as

$$\begin{aligned} G(z,z_2;\omega ) \rightarrow \frac{(\mathcal {L}+\mathcal {B}_B-z)(\mathcal {B}_A+z_2)}{\eta (\mathcal {L}+\mathcal {B}_A+\mathcal {B}_B)} \end{aligned}$$
(C.5)

for \(z>z_2\), and

$$\begin{aligned} G(z,z_2;\omega ) \rightarrow \frac{(\mathcal {L}+\mathcal {B}_B-z_2) (\mathcal {B}_A+z)}{\eta (\mathcal {L}+\mathcal {B}_A+\mathcal {B}_B)} \end{aligned}$$
(C.6)

for \(z<z_2\). By recalling that \(D_{vv}(z,\omega )\) is given by (171), we substitute (C.5) and (C.6) into (171). This yields

$$\begin{aligned} \lim _{\omega \rightarrow 0} \frac{D_{vv}(+0,\omega )}{k_B T A_{xy}} =\frac{\mathcal {B}_A(\mathcal {L}+\mathcal {B}_B)}{\eta (\mathcal {L} +\mathcal {B}_A+\mathcal {B}_B)}, \end{aligned}$$
(C.7)

where we have ignored the terms proportional to \(\delta (0)\). Substituting (C.4) and (C.7) into (C.2) produces

$$\begin{aligned} b^{HTD}_A = \mathcal {B}_A. \end{aligned}$$
(C.8)

This is what we want to prove.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakano, H., Sasa, Si. Statistical Mechanical Expressions of Slip Length. J Stat Phys 176, 312–357 (2019). https://doi.org/10.1007/s10955-019-02302-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-019-02302-7

Keywords

Navigation