Skip to main content
Log in

Mesoscopic Linear Statistics of Wigner Matrices of Mixed Symmetry Class

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We prove a central limit theorem for the mesoscopic linear statistics of \(N\times N\) Wigner matrices H satisfying \({\mathbb {E}}|H_{ij}|^2=1/N\) and \({\mathbb {E}} H_{ij}^2= \sigma /N\), where \(\sigma \in [-1,1]\). We show that on all mesoscopic scales \(\eta \) (\(1/N \ll \eta \ll 1\)), the linear statistics of H have a sharp transition at \(1-\sigma \sim \eta \). As an application, we identify the mesoscopic linear statistics of Dyson’s Brownian motion \(H_t\) started from a real symmetric Wigner matrix \(H_0\) at any nonnegative time \(t \in [0,\infty ]\). In particular, we obtain the transition from the central limit theorem for GOE to the one for GUE at time \(t \sim \eta \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Barbour, A.D.: Asymptotic expansions based on smooth functions in the central limit theorem. Prob. Theor. Rel. Fields 72, 289–303 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bekerman, F., Lodhia, A.: Mesoscopic central limit theorem for general \(\beta \)-ensembles. Ann. Inst. H. Poincare Probab. Statist. 54(4), 1917–1938 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  3. Benaych-Georges, F., Knowles, A.: Lectures on the local semicircle law for Wigner matrices. In: Advanced Topics in Random Matrices. Panoramas et Syntheses. vol. 53, Societe Mathematique de France (2016)

  4. Bourgade, P., Erdős, L., Yau, H.-T., Yin, J.: Fixed energy universality for generalized Wigner matrices. Commun. Pure Appl. Math. 69, 1815–1881 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Breuer, J., Duits, M.: Universality of mesoscopic fluctuations for orthogonal polynomial ensembles. Commun. Math. Phys. 342, 491–531 (2016)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  6. Davies, E.B.: The functional calculus. J. Lond. Math. Soc. 52, 166–176 (1995)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  7. de Monvel, A.Boutet: Asymptotic distribution of smoothed eigenvalue density. I. Gaussian random matrices. Random Oper. Stoch. Equ. 7, 1–22 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. de Monvel, A.Boutet, Khorunzhy, A.: Asymptotic distribution of smoothed eigenvalue density. II. Wigner random matrices. Random Oper. Stoch. Equ. 7, 149–168 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Duits, M., Johansson, K.: On mesoscopic equilibrium for linear statistics in Dyson’s Brownian Motion. Mem. Amer. Math. Soc. 255, 1222 (2018)

    MathSciNet  MATH  Google Scholar 

  10. Erdős, L., Krüger, T., Schröder, D.: Random matrices with slow correlation decay, Preprint arXiv:1705.10661 (2017)

  11. Erdős, L., Knowles, A.: The Altshuler–Shklovskii formulas for random band matrices II: the general case. Ann. H. Poincaré 16, 709–799 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Erdős, L., Knowles, A.: The Altshuler–Shklovskii formulas for random band matrices I: the unimodular case. Commun. Math. Phys. 333, 1365–1416 (2015)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  13. Erdős, L., Knowles, A., Yau, H.-T., Yin, J.: The local semicircle law for a general class of random matrices. Electron. J. Probab. 18, 1–58 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Erdős, L., Yau, H.-T., Yin, J.: Rigidity of eigenvalues of generalized Wigner matrices. Adv. Math. 229, 1435–1515 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. He, Y., Knowles, A.: Mesoscopic eigenvalue density correlations of Wigner matrices, Preprint arXiv:1808.09436

  16. He, Y., Knowles, A.: Mesoscopic eigenvalue statistics of Wigner matrices. Ann. Appl. Prob. 27, 1510–1550 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. He, Y., Knowles, A., Rosenthal, R.: Isotropic self-consistent equations for mean-field random matrices. Prob. Theor. Rel. Fields 171, 203–249 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Khorunzhy, A.M., Khoruzhenko, B.A., Pastur, L.A.: Asymptotic properties of large random matrices with independent entries. J. Math. Phys. 37, 5033–5060 (1996)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  19. Lambert, G.: Mesoscopic fluctuations for unitary invariant ensembles. Electr. J. Prob. 23, 33 (2018)

    MathSciNet  MATH  Google Scholar 

  20. Landon, B., Sosoe, P.: Applications of mesoscopic CLTS in random matrix theory, Preprint arXiv:1811.05915 (2018)

  21. Landon, B., Sosoe, P., Yau, H.T.: Fixed energy universality for Dyson Brownian motion. Adv. Math. 346, 1137–1332 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lee, J.O., Schnelli, K.: Local law and Tracy–Widom limit for sparse random matrices. Probab. Theory Relat. Fields 171(1), 543–616 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lodhia, A., Simm, N.: Mesoscopic linear statistics of Wigner matrices, Preprint arXiv:1503.03533

  24. Lytova, A., Pastur, L.: Central limit theorem for linear eigenvalue statistics of random matrices with independent entries. Ann. Probab. 37, 1778–1840 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Sosoe, P., Wong, P.: Regularity conditions in the CLT for linear eigenvalue statistics of Wigner matrices. Adv. Math. 249, 37–87 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author is grateful to Antti Knowles for suggesting this topic and giving various helpful comments. The author is partially supported by the Swiss National Science Foundation and the European Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukun He.

Additional information

Communicated by Alessandro Giuliani.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Proof of Lemma 3.9

We proceed by induction. By Lemma 3.8 we see that (3.11) is true for \(k=1\).

Suppose (3.11) is true for \(k\leqslant n-1\), and we would like to prove it for \(k=n\). We split according to the parity of n.

  1. (i)

    When n is odd, we write \(n=2p+1\). Suppose for some \(\lambda >0\) we have

    $$\begin{aligned} \big |\big (G^{(1)}\cdots G^{(2p+1)}\big )_{ij} \big | \prec \lambda \end{aligned}$$
    (A.1)

    uniformly in ij and \(G^{(1)},\dots ,G^{(2p+1)}\in {\mathcal {G}}\). Pick \(G^{(1)},\dots ,G^{(2p+1)}\in {\mathcal {G}}\), and by Cauchy–Schwarz inequality we have

    $$\begin{aligned}&\big |\big (G^{(1)}\cdots G^{(2p+1)}\big )_{ij} \big |\nonumber \\&\quad \leqslant \sum _{l}\big |\big (G^{(1)}\cdots G^{(p+1)}\big )_{il} \big |\cdot \big |\big (G^{(p+2)}\cdots G^{(2p+1)}\big )_{lj} \big | \nonumber \\&\quad \leqslant \big [\big (G^{(1)}\cdots G^{(p+1)}G^{(p+1)*}\cdots G^{(1)*}\big )_{ii} \big (G^{(2p+1)*}\cdots G^{(p+2)*}G^{(p+2)}\cdots G^{(2p+1)}\big )_{jj}\big ]^{1/2},\nonumber \\ \end{aligned}$$
    (A.2)

    where we abbreviate \(G^{(m)*}:=\big (G^{(m)}\big )^{*}\) . Note that resolvent identity and (A.1) shows

    $$\begin{aligned}&\big (G^{(1)}\cdots G^{(p+1)}G^{(p+1)*}\cdots G^{(1)*}\big )_{ii} \\&\quad = \frac{1}{2\eta } \big |\big (G^{(1)}\cdots G^{(p)}(G^{(p+1)}-G^{(p+1)*})G^{(p)*}\cdots G^{(1)*}\big )_{ii} \big | \prec \frac{\lambda }{\eta }\,, \end{aligned}$$

    and using (3.11) for \(k=n-1=2p\) shows

    $$\begin{aligned} \big (G^{(2p+1)*}\cdots G^{(p+2)*}G^{(p+2)}\cdots G^{(2p+1)}\big )_{jj} \prec \frac{1}{\eta ^{2p-1}}\,. \end{aligned}$$

    Thus we have

    $$\begin{aligned} \big |\big (G^{(1)}\cdots G^{(2p+1)}\big )_{ij} \big | \prec \Big (\frac{\lambda }{\eta ^{2p}}\Big )^{1/2} \end{aligned}$$
    (A.3)

    provided \(\big |\big (G^{(1)}\cdots G^{(2p+1)}\big )_{ij} \big | \prec \lambda \). The proof then follows from the trivial bound \(\big |\big (G^{(1)}\cdots G^{(2p+1)}\big )_{ij} \big | \prec 1/\eta ^{2p+1}\) and iterating (A.3).

  2. (ii)

    When n is even, we write \(n=2p\). Pick \(G^{(1)},\dots ,G^{(2p)}\in {\mathcal {G}}\), and similar as in (A.2) we have

    $$\begin{aligned}&\big |\big (G^{(1)}\cdots G^{(2p)}\big )_{ij} \big | \leqslant \big [\big (G^{(1)}\cdots G^{(p)}G^{(p)*}\cdots G^{(1)*}\big )_{ii} \nonumber \\&\quad \big (G^{(2p)*}\cdots G^{(p+1)*}G^{(p+1)}\cdots G^{(2p)}\big )_{jj}\big ]^{1/2} \,. \end{aligned}$$
    (A.4)

Using resolvent identity and (3.11) for \(k=n-1=2p-1\) we have

$$\begin{aligned}&\big (G^{(1)}\cdots G^{(p)}G^{(p)*}\cdots G^{(1)*}\big )_{ii}\\&\quad = \frac{1}{2\eta } \big |\big (G^{(1)}\cdots G^{(p-1)}(G^{(p)}-G^{(p)*})G^{(p-1)*}\cdots G^{(1)*}\big )_{ii} \big | \prec \frac{1}{\eta ^{2p-1}}\,, \end{aligned}$$

combining with a similar estimate of the last factor on RHS of (A.4) we get

$$\begin{aligned} \big |\big (G^{(1)}\cdots G^{(2p)}\big )_{ij} \big | \prec \frac{1}{\eta ^{2p-1}} \end{aligned}$$

as desired.

Appendix B: Proof of Lemma 3.11

The proof of (3.13) is similar to that of Lemma 4.8 in [16]. By the resolvent identity and Lemma 3.2, we arrive at

$$\begin{aligned} {{\mathbb {E}}}\underline{G^2} = \frac{1}{T} {{\mathbb {E}}}{\underline{G}} + \frac{2}{T} {{\mathbb {E}}}\langle {\underline{G}} \rangle \langle \underline{G^2} \rangle + \frac{2\sigma }{TN} {{\mathbb {E}}}\underline{G^2G^{\intercal }} -\frac{K^{(5)}}{T}- \frac{L^{(5)}}{T}\,, \end{aligned}$$
(B.1)

where \(T :=-z-2{\mathbb {E}} \underline{G} \!\,\)

$$\begin{aligned} K^{(2)}=N^{-2} \sum \limits _{i} {{\mathbb {E}}}\frac{\partial (G^2)_{ii}}{\partial H_{ii}}(\zeta _i-1-\sigma )\,, \end{aligned}$$

and

$$\begin{aligned} L^{(2)}= \frac{1}{N} \sum \limits _{i,j} \left[ \sum \limits _{k=2}^{\ell } \sum _{\begin{array}{c} p,q \geqslant 0,\\ p+q=k \end{array}}\frac{1}{p!\,q!} {\mathcal {C}}_{p+1,q}(H_{ji}) {{\mathbb {E}}}\frac{\partial ^k (G^2)_{ij}}{\partial H_{ji}^p \partial H_{ij}^q} +R_{\ell +1}^{(2,ji)} \right] \,. \end{aligned}$$
(B.2)

Here \(R_{l+1}^{(2,ji)}\) is a remainder term defined analogously to \(R_{\ell +1}^{(ji)}\) in (5.15). By Lemmas 3.83.10, we can argue similarly as in the proof of Lemma 4.8 in [16] and show that every term on the RHS of (B.1) is bounded by \(O_{\prec }(N^{\alpha -\chi })\). This proves (3.13).

The proof of (3.14) is similar to that of Lemma 4.3 (ii) in [16]. By the resolvent identity and Lemma 3.2, we have

$$\begin{aligned} {{\mathbb {E}}}{\underline{G}} = \frac{1}{U} \Big ( 1+{{\mathbb {E}}}\langle {\underline{G}}\rangle ^2+\frac{\sigma }{N}{{\mathbb {E}}}\underline{G^2}-K^{(6)}-L^{(6)}\Big ), \end{aligned}$$
(B.3)

where \(U:=-z-{{\mathbb {E}}}{\underline{G}}\),

$$\begin{aligned} K^{(6)}=N^{-2} \sum \limits _{i} {{\mathbb {E}}}\frac{\partial G_{ii}}{\partial H_{ii}}(\zeta _i-1-\sigma )\,, \end{aligned}$$

and

$$\begin{aligned} L^{(6)}= \frac{1}{N}\sum \limits _{i,j} \left[ \sum \limits _{k=2}^{\ell } \sum _{\begin{array}{c} p,q \geqslant 0,\\ p+q=k \end{array}}\frac{1}{p!\,q!} {\mathcal {C}}_{p+1,q}(H_{ji}) {{\mathbb {E}}}\frac{\partial ^k G_{ij}}{\partial H_{ji}^p \partial H_{ij}^q} +R_{\ell +1}^{(6,ji)} \right] . \end{aligned}$$

Here \(R_{\ell +1}^{(6,ji)}\) is a remainder term defined analogously to \(R_{\ell +1}^{(ji)}\) in (5.15). By Lemmas 3.83.10, we can argue similarly as in the proof of Lemma 4.3 (ii) in [16] and show that the last four terms on the RHS of (B.3) is bounded by \(O(N^{\alpha -1-\chi })\). Thus

$$\begin{aligned} {{\mathbb {E}}}{\underline{G}}(z+{{\mathbb {E}}}{\underline{G}})+1=O_{\prec }(N^{\alpha -1-\chi })\,. \end{aligned}$$
(B.4)

Again by the argument in the proof of Lemma 4.3 (ii) in [16] we arrive at

$$\begin{aligned} |{{\mathbb {E}}}{\underline{G}} -m(z)|=O_{\prec }(N^{\alpha -1-\chi })\,, \end{aligned}$$

which completes the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y. Mesoscopic Linear Statistics of Wigner Matrices of Mixed Symmetry Class. J Stat Phys 175, 932–959 (2019). https://doi.org/10.1007/s10955-019-02266-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-019-02266-8

Keywords

Navigation