Skip to main content
Log in

On Bose–Einstein Condensation in the Luttinger–Sy Model with Finite Interaction Strength

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study Bose–Einstein condensation (BEC) in the Luttinger–Sy model. Here, Bose point particles in one spatial dimension do not interact with each other, but, through a positive (repulsive) point potential with impurities which are randomly located along the real line according to the points of a Poisson process. Our emphasis is on the case in which the interaction strength is not infinite. As a main result, we prove that in thermal equilibrium the one-particle ground state is macroscopically occupied, provided that the particle density is larger than a critical one depending on the temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. When we speak of the density of states we always mean the corresponding measure and never the density in the sense of the Radon–Nikodym derivative of this measure with respect to the Lebesgue measure. We do not even know whether the latter exists in this model.

References

  1. Bratteli, O., Robinson, D.: Operator Algebras and Quantum-Statistical Mechanics. II, Springer, New York-Berlin, Equilibrium States. Models in quantum-statistical mechanics, Texts and Monographs in Physics (1981)

  2. Casimir, H.: On Bose-Einstein condensation. Fund. Prob. Stat. Mech. 3, 188–196 (1968)

    MATH  Google Scholar 

  3. Eggarter, T.P.: Some exact results on electron energy levels in certain one-dimensional random potentials. Phys. Rev. B 5, 3863–3865 (1972)

    Article  ADS  Google Scholar 

  4. Einstein, A.: Quantentheorie des einatomigen idealen Gases, Sitzber. Kgl. Preuss. Akad. Wiss. (1924), 261–267

  5. Einstein, A.: Quantentheorie des einatomigen idealen Gases, II. Abhandlung, Sitzber. Kgl. Preuss. Akad. Wiss. 3–14 (1925)

  6. Girardeau, M.: Relationship between systems of impenetrable bosons and fermions in one dimension. J. Math. Phys. 1(6), 516–523 (1960)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Gredeskul, S.A., Pastur, L.A.: Behavior of the density of states in one-dimensional disordered systems near the edges of the spectrum. Theor. Math. Phys. 23, 404–409 (1975)

    Article  Google Scholar 

  8. Hewitt, E., Stromberg, K.: Real and Abstract Analysis: A Modern Treatment of the Theory of Functions of a Real Variable. Springer, New York (1965)

    Book  MATH  Google Scholar 

  9. Jaeck, T., Pulé, J.V., Zagrebnov, V.A.: On the nature of Bose-Einstein condensation enhanced by localization. J. Math. Phys. 51(10), 103302 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Kerner, J., Pechmann, M., Spitzer, W.: Bose–Einstein condensation in the Luttinger–Sy model with contact interaction (2018). arXiv:1804.07697

  11. Kirsch, W., Simon, B.: Universal lower bounds on eigenvalue splittings for one dimensional Schrödinger operators. Commun. Math. Phys. 97(3), 453–460 (1985)

    Article  ADS  MATH  Google Scholar 

  12. Lenoble, O., Pastur, L.A., Zagrebnov, V.A.: Bose-Einstein condensation in random potentials. C. R. Phys. 5(1), 129–142 (2004)

    Article  ADS  Google Scholar 

  13. Luttinger, J.M., Sy, H.K.: Bose-Einstein condensation in a one-dimensional model with random impurities. Phys. Rev. A 7(2), 712 (1973)

    Article  ADS  Google Scholar 

  14. Luttinger, J.M., Sy, H.K.: Low-lying energy spectrum of a one-dimensional disordered system. Phys. Rev. A 7(2), 701 (1973)

    Article  ADS  Google Scholar 

  15. Landau, L.J., Wilde, I.F.: On the Bose-Einstein condensation of an ideal gas. Commun. Math. Phys. 70(1), 43–51 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  16. Lenoble, O., Zagrebnov, V.A.: Bose-Einstein condensation in the Luttinger-Sy model. Mark. Proc. Rel. Fields 13(2), 441–468 (2007)

    MathSciNet  MATH  Google Scholar 

  17. Pastur, L.A., Figotin, A.: Spectra of Random and Almost-Periodic Operators. Springer, New York (1992)

    Book  MATH  Google Scholar 

  18. Penrose, O., Onsager, L.: Bose-Einstein condensation and Liquid Helium. Phys. Rev. 104, 576–584 (1956)

    Article  ADS  MATH  Google Scholar 

  19. van den Berg, M.: On condensation in the free-boson gas and the spectrum of the Laplacian. J. Stat. Phys. 31, 623–637 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  20. van den Berg, M., Lewis, J.T.: On generalized condensation in the free boson gas. Physica A 110(3), 550–564 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  21. van den Berg, M., Lewis, J.T., Lunn, M.: On the general theory of Bose-Einstein condensation and the state of the free boson gas. Helv. Phys. Acta 59(8), 1289–1310 (1986)

    MathSciNet  Google Scholar 

  22. van den Berg, M., Lewis, J.T., Pulé, J.V.: A general theory of Bose-Einstein condensation. Helv. Phys. Acta 59(8), 1271–1288 (1986)

    MathSciNet  Google Scholar 

  23. Zagrebnov, V.A.: Bose-Einstein condensation in a random media. J. Phys. Stud. 11(1), 108–121 (2007)

    Google Scholar 

  24. Zagrebnov, V.A., Bru, J.B.: The Bogoliubov model of weakly imperfect Bose gas. Phys. Rep. 350, 291–434 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

It is our pleasure to thank Werner Kirsch and Hajo Leschke for interesting discussions and useful remarks that led to an improvement of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Spitzer.

Additional information

Communicated by Alessandro Giuliani.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A Appendix

A Appendix

In this appendix we collect results for the LS model that we used to establish the results in the previous sections. We start with an estimate between the integrated density of states for finite N and the infinite-volume integrated density of states.

Lemma A.1

For all \(N \in \mathbb {N}\), \(E > 0\), and \(0< {\mathcal {E}} < E^{-1/2}\) we have

$$\begin{aligned} \mathbb {E} \left[ {\mathcal {N}}_N^{\mathrm {I},\omega }(E) \right] \le {\mathcal {N}}_{\infty }^{\mathrm {I}} ([E^{-1/2} - {\mathcal {E}}]^{-2}) \ . \end{aligned}$$
(A.1)

Moreover, for all \(N \in \mathbb {N}\) and Lebesgue-almost all \(E \ge 0\) (i.e., all \(E \ge 0\) except the discontinuity points of \(\mathcal N_{\infty }^{\mathrm {I}}\)) one has

$$\begin{aligned} \mathbb {E} \left[ {\mathcal {N}}_N^{\mathrm {I},\omega }(E) \right] \le {\mathcal {N}}_{\infty }^{\mathrm {I}} (E) \ . \end{aligned}$$
(A.2)

Proof

In this proof, \({\mathcal {N}}_{\Lambda }^{\mathrm {I},\omega }\) denotes the integrated density of states corresponding to the operator \(h^{\Lambda }_{\gamma }(\omega )\) on \(H^1_0(\Lambda )\), defined analogously to (2.4).

In a first step, we realize that, for arbitrary disjoint intervals \(\Lambda ^1, \Lambda ^2 \subset \mathbb {R}\) and for any \(E \ge 0\), the inequality

$$\begin{aligned} |\Lambda ^1|\, {\mathcal {N}}_{\Lambda ^1}^{\mathrm {I}, \omega }(E) + |\Lambda ^2| \, {\mathcal {N}}_{\Lambda ^2}^{\mathrm {I}, \omega }(E) \le |\Lambda ^1 \cup \Lambda ^2| \, {\mathcal {N}}_{\Lambda ^1 \cup \Lambda ^2}^{\mathrm {I}, \omega }(E) \end{aligned}$$
(A.3)

holds for \(\mathbb {P}\)-almost all \(\omega \in \Omega \), see, e.g., [17, 5.39a].

For \(M,N \in \mathbb {N}\) and \(j \in \mathbb {Z}\) we define \(\Lambda ^{j}_N:=\Lambda _N + L_N \cdot j\) and \(\Lambda _{M,N}:=\bigcup _{j \in \mathbb {Z}: |j| \le M} \Lambda _N^j\). Note that \(\{ {\mathcal {N}}_{\Lambda _N^j}^{\mathrm {I},\omega }(E) \}_{j \in \mathbb {Z}}\) is a set of independent and identically distributed random variables for all \(E \ge 0\). Hence, employing the strong law of large numbers, inequality (A.3), and introducing the continuous function

$$\begin{aligned} f_{E, {\mathcal {E}}} : \mathbb {R} \rightarrow \mathbb {R},\ x \mapsto {\left\{ \begin{array}{ll} 0 &{}\quad \text { if }\, x \le - {\mathcal {E}} \\ 1 + {\mathcal {E}}^{-1} x &{}\quad \text { if }\, -{\mathcal {E}}< x< 0 \\ 1 &{}\quad \text { if }\, 0 \le x \le E \\ 1 - \dfrac{x-E}{[E^{-1/2} - {\mathcal {E}}]^{-2} - E} &{}\quad \text { if }\, E< x < [E^{-1/2} - {\mathcal {E}}]^{-2} \\ 0 &{}\quad \text { if }\, x \ge [E^{-1/2} - {\mathcal {E}}]^{-2} \end{array}\right. } \end{aligned}$$

we find that, for all \(E > 0\),

$$\begin{aligned} \mathbb {E} \Big [ {\mathcal {N}}_N^{\mathrm {I},\omega }(E) \Big ]&= \lim \limits _{M \rightarrow \infty } \dfrac{1}{2M+1}\sum \limits _{j \in \mathbb {Z} : |j| \le M} {\mathcal {N}}_{\Lambda _N^j}^{\mathrm {I},\omega }(E)\\&= \lim \limits _{M \rightarrow \infty } \dfrac{1}{|\Lambda _M|} \sum \limits _{j \in \mathbb {Z} : |j| \le M} |\Lambda _N^j| \, \mathcal N_{\Lambda _N^j}^{\mathrm {I},\omega }(E) \\&\le \limsup \limits _{M \rightarrow \infty } \mathcal N_{\Lambda _{M,N}}^{\mathrm {I},\omega }(E) \le \limsup \limits _{M \rightarrow \infty } {\mathcal {N}}_{M}^{\mathrm {I},\omega }(E) \\&\le \lim \limits _{M \rightarrow \infty } \int \limits _{\mathbb {R}} f_{E,{\mathcal {E}}}({{\widetilde{E}}}) \, {\mathcal {N}}_M^{\omega }(\mathrm {d} {{\widetilde{E}}}) = \int \limits _{\mathbb {R}} f_{E,{\mathcal {E}}}(\widetilde{E}) \, {\mathcal {N}}_{\infty }(\mathrm {d} {{\widetilde{E}}}) \\&\le {\mathcal {N}}_{\infty }^{\mathrm {I}}([E^{-1/2} - {\mathcal {E}}]^{-2}) \ . \end{aligned}$$

(A.2) follows from the fact that \({\mathcal {N}}_{\infty }^{\mathrm {I}}\) is monotonically increasing and hence has at most countably many points of discontinuity and by taking the limit \({\mathcal {E}} \searrow 0\). \(\square \)

Using this result we obtain a lower bound for the ground-state energy.

Lemma A.2

For all \(\kappa > 2\) and for \(\mathbb {P}\)-almost all \(\omega \) there exists an \({{\widetilde{N}}} = {{\widetilde{N}}}(\kappa , \omega ) \in \mathbb {N}\) such that for all \(N \ge {{\widetilde{N}}}\) we have

$$\begin{aligned} E_N^{1,\omega } \ge \left( \dfrac{\pi \nu }{\kappa \ln (L_N)} \right) ^{2} \ . \end{aligned}$$
(A.4)

Proof

Let \(\kappa > 2\) be given. We define \({{\widehat{E}}}_N := (\pi \nu / [ \kappa \ln (L_N)])^{2}\) for all \(N \in \mathbb {N}\) with \(L_N> 1\), and pick some \({\mathcal {E}} > 0\).

Then, with Lemma A.1 and Theorem 2.4 we conclude that for all but finitely many \(N \in \mathbb {N}\) one has

$$\begin{aligned} \mathbb {P}\left( \omega : |\Lambda _N| \cdot \mathcal N_N^{\omega }({{\widehat{E}}}_N) \ge 1 \right)&\le L_N \cdot \mathbb {E}\left[ {\mathcal {N}}_N^{\mathrm {I}, \omega }({{\widehat{E}}}_N) \right] \\&\le L_N \cdot {\mathcal {N}}^{\mathrm {I}}_{\infty }([\widehat{E}_N^{-1/2} - {\mathcal {E}}]^{-2}) \\&\le {\widetilde{M}}L_N \cdot \exp \left( - \pi \nu \left[ \widehat{E}_N^{-1/2} - {\mathcal {E}} \right] \right) \\&\le {\widetilde{M}} \mathrm {e}^{\pi \nu {\mathcal {E}}}\cdot L_N^{- \kappa +1} \ . \end{aligned}$$

Hence \(\sum _{N=1}^{\infty } \mathbb {P}\left( \omega : L_N\cdot \mathcal N_N^{\omega }({{\widehat{E}}}_N) \ge 1 \right) < \infty \) and the statement follows from the Borel–Cantelli lemma. \(\square \)

Remark A.3

Lemmas A.1 and A.2 can readily be generalized to Poisson random potentials of the form

$$\begin{aligned} V(\omega , \cdot ) = \sum \limits _{j\in \mathbb {Z}} u(\cdot - x_j(\omega )) \ , \end{aligned}$$

with \(u \in L^{\infty }(\mathbb {R})\) having compact support. What we do not have at our disposal is the \(O(E^{1/2})\)-error bound in the Lifshitz-tail behavior. If we did we could carry over our results to these models.

Note that the critical density \(\rho _c(\beta )\) was defined in (2.14).

Lemma A.4

For all \(\beta > 0\), the critical density \(\rho _c(\beta )\) satisfies

$$\begin{aligned} \rho _c(\beta ) = \int \limits _{(0,\infty )} {\mathcal {B}}(E) \, \mathcal N_{\infty } (\mathrm {d} E) < \infty \ . \end{aligned}$$

Proof

In a first step we show that

$$\begin{aligned} \int \limits _{\mathbb {R}} {\mathcal {B}}(E) \, {\mathcal {N}}_{\infty } (\mathrm {d} E) = \int \limits _{(0,\infty )} {\mathcal {B}}(E) \, \mathcal N_{\infty } (\mathrm {d} E) \end{aligned}$$
(A.5)

is finite. In order to do this, we choose \({{\widetilde{E}}}_1: = {{\widetilde{E}}}\) with \({{\widetilde{E}}} > 0\) as in Theorem 2.4. Moreover, we choose \({{\widetilde{E}}}_2 > {{\widetilde{E}}}_1\) such that for \(E \ge {{\widetilde{E}}}_2\) one has

$$\begin{aligned} {\mathcal {B}}(E) \le \left( 2^{-1/2} \mathrm {e}^{\beta E} \right) ^{-1} \end{aligned}$$
(A.6)

and

$$\begin{aligned} {\mathcal {N}}_{\infty }^{\mathrm {I}}(E) \le c E^{1/2} \end{aligned}$$
(A.7)

with \(c > 0\) as in Theorem 2.4. We write,

$$\begin{aligned} \int \limits _{(0,\infty )} {\mathcal {B}}(E) \, {\mathcal {N}}_{\infty } (\mathrm {d} E)&= \int \limits _{(0,{{\widetilde{E}}}_1]} {\mathcal {B}}(E) \, {\mathcal {N}}_{\infty } (\mathrm {d} E) \end{aligned}$$
(A.8)
$$\begin{aligned}&\quad + \int \limits _{({{\widetilde{E}}}_1,{{\widetilde{E}}}_2]}{\mathcal {B}}(E) \, {\mathcal {N}}_{\infty } (\mathrm {d} E) \end{aligned}$$
(A.9)
$$\begin{aligned}&\quad + \int \limits _{({{\widetilde{E}}}_2,\infty )} {\mathcal {B}}(E) \, \mathcal N_{\infty } (\mathrm {d} E) \end{aligned}$$
(A.10)

The term in line (A.9) is finite since

$$\begin{aligned} \int \limits _{({{\widetilde{E}}}_1,{{\widetilde{E}}}_2]} {\mathcal {B}}(E) \, {\mathcal {N}}_{\infty } (\mathrm {d} E) \le {\mathcal {B}}({{\widetilde{E}}}_1)\, {\mathcal {N}}_{\infty }^{\mathrm {I}} ({{\widetilde{E}}}_2) \le c\,\mathcal B({{\widetilde{E}}}_1)\, {{\widetilde{E}}}_2^{1/2} < \infty \ , \end{aligned}$$

see also (A.7).

In the following, we write \({\mathcal {N}}_{\infty }^{\mathrm {I}}(E+)\) for the right-sided limit of \({\mathcal {N}}_{\infty }^{\mathrm {I}}\) at E.

For the term in line (A.8) we get, using integration by parts, see, e.g., [8, Theorem 21.67], and the fact that \(\mathcal N_{\infty }^{\mathrm {I}}\) is non-decreasing,

$$\begin{aligned} A&:= \lim \limits _{\epsilon _1 \searrow 0} \int \limits _{(\epsilon _1,{{\widetilde{E}}}_1]} {\mathcal {B}}(E) \, \mathcal N_{\infty } (\mathrm {d} E) \\&\,\le \lim \limits _{\epsilon _1 \searrow 0} \left\{ \mathcal B({{\widetilde{E}}}_1) \, {\mathcal {N}}_{\infty }^{\mathrm {I}} (\widetilde{E}_1+) + \int \limits _{\epsilon _1}^{{{\widetilde{E}}}_1} \mathcal N_{\infty }^{\mathrm {I}} (E) \big [{\mathcal {B}}(E)\big ]^2\, \beta \mathrm {e}^{\beta E} \, \mathrm {d} E \right\} \\&\,\le {\mathcal {B}}({{\widetilde{E}}}_1)\, \mathcal N_{\infty }^{\mathrm {I}} (2 {{\widetilde{E}}}_1) + \int \limits _{0}^{{{\widetilde{E}}}_1} {\mathcal {N}}_{\infty }^{\mathrm {I}} (E) \big [{\mathcal {B}}(E)\big ]^2\, \beta \mathrm {e}^{\beta E} \, \mathrm {d} E \end{aligned}$$

and by Theorem 2.4,

$$\begin{aligned}&\le {\mathcal {B}}({{\widetilde{E}}}_1)\, {\mathcal {N}}_{\infty }^{\mathrm {I}} (2 {{\widetilde{E}}}_1) + \int \limits _{0}^{{{\widetilde{E}}}_1} {{\widetilde{M}}} \mathrm {e}^{- \nu \pi E^{-1/2}} (\beta E)^{-2} \beta \mathrm {e}^{\beta E} \, \mathrm {d} E \\&\le {\mathcal {B}}({{\widetilde{E}}}_1)\, {\mathcal {N}}_{\infty }^{\mathrm {I}} (2 {{\widetilde{E}}}_1) + {{\widetilde{M}}} \beta ^{-1} \mathrm {e}^{\beta {{\widetilde{E}}}_1} \int \limits _{0}^{{{\widetilde{E}}}_1} \dfrac{4! E^2}{(\nu \pi )^4} E^{-2} \, \mathrm {d} E < \infty \ . \end{aligned}$$

As a last step, we show that also the term in line (A.10) is finite. We obtain

$$\begin{aligned} C&:= \lim \limits _{\epsilon _2 \rightarrow \infty } \int \limits _{(\widetilde{E}_2,\epsilon _2]} {\mathcal {B}}(E) \, {\mathcal {N}}_{\infty } (\mathrm {d} E) \\&\, \le \lim \limits _{\epsilon _2 \rightarrow \infty } \left[ \mathcal B(\epsilon _2)\, {\mathcal {N}}_{\infty }^{\mathrm {I}} (\epsilon _2+) + \int \limits _{{{\widetilde{E}}}_2}^{\epsilon _2} \mathcal N_{\infty }^{\mathrm {I}} (E) \big [{\mathcal {B}}(E)\big ]^2\, \beta \mathrm {e}^{\beta E} \, \mathrm {d} E \right] \end{aligned}$$

by using integration by parts. Since \(\mathcal N_{\infty }^{\mathrm {I}}\) is non-decreasing,

$$\begin{aligned} C&\, \le \lim \limits _{\epsilon _2 \rightarrow \infty } \left[ {\mathcal {B}}(\epsilon _2)\, {\mathcal {N}}_{\infty }^{\mathrm {I}} (2\epsilon _2) + \int \limits _{{{\widetilde{E}}}_2}^{\epsilon _2} {\mathcal {N}}_{\infty }^{\mathrm {I}} (E) \big [{\mathcal {B}}(E)\big ]^2\, \beta \mathrm {e}^{\beta E} \, \mathrm {d} E \right] \end{aligned}$$

and using (A.6) and (A.7),

$$\begin{aligned}&\, \le \lim \limits _{\epsilon _2 \rightarrow \infty } \left[ 2 c \, \mathrm {e}^{-\beta \epsilon _2} \epsilon _2^{1/2} + 2 c \beta \, \int \limits _{{{\widetilde{E}}}_2}^{\epsilon _2} E^{1/2} \mathrm {e}^{-2\beta E } \mathrm {e}^{\beta E} \, \mathrm {d} E \right] < \infty \ . \end{aligned}$$

Altogether we have by now proved (A.5).

The final statement about \(\rho _c(\beta )\) then follows, using again dominated convergence, by

$$\begin{aligned} \rho _c(\beta )&= \sup \limits _{\mu \in (-\infty ,0)} \left\{ \int \limits _{\mathbb {R}} {\mathcal {B}}(E - \mu ) \, \mathcal N_{\infty }(\mathrm {d} E) \right\} \\&= \sup \limits _{\mu \in (-\infty ,0)} \left\{ \int \limits _{(0,\infty )} {\mathcal {B}}(E - \mu ) \, \mathcal N_{\infty }(\mathrm {d} E) \right\} \\&= \lim \limits _{\mu \rightarrow 0^{-}} \int \limits _{(0,\infty )} {\mathcal {B}}(E - \mu ) \, {\mathcal {N}}_{\infty }(\mathrm {d} E) \\&= \int \limits _{(0,\infty )} {\mathcal {B}}(E) \, \mathcal N_{\infty }(\mathrm {d} E) < \infty \ . \end{aligned}$$

The statement in the next lemma is not trivial since we have only vague convergence of the density of states and not weak convergence.

Lemma A.5

For all \(\mu < 0\) we have \(\mathbb {P}\)-almost surely

$$\begin{aligned} \lim \limits _{N \rightarrow \infty } \int \limits _{(0,\infty )} {\mathcal {B}}(E - \mu ) \, {\mathcal {N}}_N^{\omega }(\mathrm {d} E) = \int \limits _{(0,\infty )} {\mathcal {B}}(E - \mu ) \, \mathcal N_{\infty }(\mathrm {d} E) \ . \end{aligned}$$
(A.11)

Proof

Let \(\mu < 0\) be given. Then, for all \(E_2 > 0\) we get

$$\begin{aligned} \begin{aligned} \limsup \limits _{N \rightarrow \infty } \int \limits _{(0,\infty )}&{\mathcal {B}}(E - \mu ) \, {\mathcal {N}}_N^{\omega }(\mathrm {d} E) \\ \le \,&\limsup \limits _{N \rightarrow \infty } \int \limits _{(0,E_2]} {\mathcal {B}}(E - \mu ) \, {\mathcal {N}}_N^{\omega }(\mathrm {d} E) + \limsup \limits _{N \rightarrow \infty } \int \limits _{[E_2,\infty )} {\mathcal {B}}(E - \mu ) \, {\mathcal {N}}_N^{\omega }(\mathrm {d} E) \ . \end{aligned} \end{aligned}$$

For \(0< {\mathcal {E}} < - \mu \) we define the real function \(g_{{\mathcal {E}}, E_2}\) as

$$\begin{aligned} g_{{\mathcal {E}}, E_2} (E) := {\left\{ \begin{array}{ll} 0 &{} \quad \text { if }\, E \le - {\mathcal {E}} \\ 1 + {\mathcal {E}}^{-1} E &{} \quad \text { if }\, - {\mathcal {E}}< E< 0 \\ 1 &{} \quad \text { if }\, 0 \le E \le E_2 \\ 1 - \dfrac{E - E_2}{{\mathcal {E}}} &{} \quad \text { if }\, E_2< E < E_2 + {\mathcal {E}} \\ 0 &{} \quad \text { if }\, E > E_2 + {\mathcal {E}} \end{array}\right. }\ . \end{aligned}$$
(A.12)

For the first integral we \(\mathbb {P}\)-almost surely obtain, by \(\mathbb {P}\)-almost sure vague convergence,

$$\begin{aligned} \limsup \limits _{N \rightarrow \infty } \int \limits _{(0,E_2]}&{\mathcal {B}}(E - \mu ) \, {\mathcal {N}}_N^{\omega }(\mathrm {d} E) \\ \le \,&\limsup \limits _{N \rightarrow \infty } \int \limits _{\mathbb {R}} g_{{\mathcal {E}}, E_2} (E) {\mathcal {B}}(E - \mu ) \, \mathcal N_N^{\omega }(\mathrm {d} E) \\ \le \,&{\mathcal {B}}(E_2 - \mu ) {\mathcal {N}}_{\infty }^{\mathrm {I}}(E_2 + {\mathcal {E}})+ \int \limits _{(0,E_2]} {\mathcal {B}}(E - \mu ) \, {\mathcal {N}}_{\infty }(\mathrm {d} E). \end{aligned}$$

Furthermore,

$$\begin{aligned} \limsup \limits _{N \rightarrow \infty }&\int \limits _{[E_2,\infty )}{\mathcal {B}}(E - \mu ) \, \mathcal N_N^{\omega }(\mathrm {d} E) \le \limsup \limits _{N \rightarrow \infty } \lim \limits _{\epsilon _2 \rightarrow \infty } \int \limits _{[E_2,\epsilon _2]} {\mathcal {B}}(E - \mu ) \, {\mathcal {N}}_N^{\omega }(\mathrm {d} E)\ , \end{aligned}$$

and integrating by parts gives

$$\begin{aligned} \le \,&\limsup \limits _{N \rightarrow \infty } \lim \limits _{\epsilon _2 \rightarrow \infty } \left[ {\mathcal {B}}(\epsilon _2- \mu ) \mathcal N_N^{\mathrm {I},\omega }(\epsilon _2) + \beta \int \limits _{E_2}^{\epsilon _2} \mathcal N_N^{\mathrm {I},\omega }(E) \big [{\mathcal {B}}(E - \mu )\big ]^2\, \mathrm {e}^{\beta (E - \mu )} \, \mathrm {d} E\right] \ . \end{aligned}$$

If we denote with \({\mathcal {N}}_N^{\mathrm {I},(0)}\) the integrated density of states of the free Hamiltonian \(-\mathrm {d}^2/\mathrm {d}x^2\) on \(H^1_0(\Lambda _N)\) then we can further bound this by

$$\begin{aligned} \le \,&\limsup \limits _{N \rightarrow \infty } \lim \limits _{\epsilon _2 \rightarrow \infty } \left[ {\mathcal {B}}(\epsilon _2 - \mu ) \mathcal N_N^{\mathrm {I},(0)}(\epsilon _2) + \beta \int \limits _{E_2}^{\epsilon _2} {\mathcal {N}}_N^{\mathrm {I},(0)}(E) \big [{\mathcal {B}}(E - \mu )\big ]^2\, \mathrm {e}^{\beta (E - \mu )} \, \mathrm {d} E\right] \ . \end{aligned}$$

Since \({\mathcal {N}}_N^{\mathrm {I},(0)}(E) \le \pi ^{-1} E^{1/2}\) for all \(E \ge 0\) and all \(N \in \mathbb {N}\) we get

$$\begin{aligned} = \,&\lim \limits _{\epsilon _2 \rightarrow \infty } \left[ \pi ^{-1} {\mathcal {B}}(\epsilon _2 - \mu ) \epsilon _2^{1/2} + \beta \pi ^{-1}\int \limits _{E_2}^{\epsilon _2} E^{1/2} \big [\mathcal B(E - \mu )\big ]^2\, \mathrm {e}^{\beta (E - \mu )} \, \mathrm {d} E \right] \\ = \,&\beta \pi ^{-1}\int \limits _{E_2}^{\infty } E^{1/2} \big [{\mathcal {B}}(E - \mu )\big ]^2\, \mathrm {e}^{\beta (E - \mu )} \, \mathrm {d} E \ . \end{aligned}$$

Hence, in total we obtain \(\mathbb {P}\)-almost surely

$$\begin{aligned} \limsup \limits _{N \rightarrow \infty }&\int \limits _{(0,\infty )} {\mathcal {B}}(E - \mu ) \, {\mathcal {N}}_N^{\omega }(\mathrm {d} E) \\ \le \,&\lim \limits _{E_2 \rightarrow \infty } {\mathcal {B}}(E_2 - \mu ) {\mathcal {N}}_{\infty }^{\mathrm {I}}(E_2 + {\mathcal {E}})+\lim \limits _{E_2 \rightarrow \infty } \int \limits _{(0,E_2]} {\mathcal {B}}(E - \mu ) \, \mathcal N_{\infty }(\mathrm {d} E)\\&+ \, \beta \pi ^{-1} \lim \limits _{E_2 \rightarrow \infty } \int \limits _{E_2}^{\infty } E^{1/2} \big [{\mathcal {B}}(E - \mu )\big ]^2\, \mathrm {e}^{\beta (E - \mu )} \, \mathrm {d} E \\ = \,&\int \limits _{(0,\infty )} {\mathcal {B}}(E - \mu ) \, \mathcal N_{\infty }(\mathrm {d} E), \end{aligned}$$

where we also used Theorem 2.4.

On the other hand, for all \(E_2 > 0\)\(\mathbb {P}\)-almost surely,

$$\begin{aligned} \liminf \limits _{N \rightarrow \infty } \int \limits _{(0,\infty )} {\mathcal {B}}(E - \mu ) \, {\mathcal {N}}_N^{\omega }(\mathrm {d} E)&\ge \liminf \limits _{N \rightarrow \infty } \int \limits _{\mathbb {R}} g_{{\mathcal {E}}, E_2}(E) {\mathcal {B}}(E - \mu ) \, {\mathcal {N}}_N^{\omega }(\mathrm {d} E) \\&= \int \limits _{\mathbb {R}} g_{{\mathcal {E}}, E_2}(E) {\mathcal {B}}(E - \mu ) \, {\mathcal {N}}_{\infty }(\mathrm {d} E) \\&\ge \int \limits _{(0,E_2]} {\mathcal {B}}(E - \mu ) \, \mathcal N_{\infty }(\mathrm {d} E) \ . \end{aligned}$$

Thus, \(\mathbb {P}\)-almost surely,

$$\begin{aligned} \liminf \limits _{N \rightarrow \infty } \int \limits _{(0,\infty )} {\mathcal {B}}(E - \mu ) \, {\mathcal {N}}_N^{\omega }(\mathrm {d} E)&\ge \lim \limits _{E_2 \rightarrow \infty } \int \limits _{(0,E_2]} {\mathcal {B}}(E - \mu ) \, \mathcal N_{\infty }(\mathrm {d} E) \\&=\, \int \limits _{(0,\infty )} {\mathcal {B}}(E - \mu )\, {\mathcal {N}}_{\infty }(\mathrm {d} E) \ . \end{aligned}$$

\(\square \)

The next lemma is taken from [12]. We follow in parts their proof.

Lemma A.6

If \(\rho < \rho _c(\beta )\), then \(\mu ^{\omega }_{N}\) converges \(\mathbb {P}\)-almost surely to a non-random limit point \({{\widehat{\mu }}} < 0\). On the other hand, if \(\rho \ge \rho _c(\beta )\), then \(\mu ^{\omega }_{N}\) converges \(\mathbb {P}\)-almost surely to 0.

Proof

In a first step, we show that the sequence \((\mu ^{\omega }_{N})_{N=1}^{\infty }\) has \(\mathbb {P}\)-almost surely at least one accumulation point in both cases: Note that

$$\begin{aligned} \limsup \limits _{N \rightarrow \infty } \int \limits _{(0,\infty )} \mathrm {e}^{-\beta E} {\mathcal {N}}_N^{\omega }(\mathrm {d} E) \le \limsup \limits _{N \rightarrow \infty }\frac{1}{L_N} \sum \limits _{j =1}^{\infty } \mathrm {e}^{-\beta (j\pi / L_N)^2} = (4\pi \beta )^{-1/2} < \infty \end{aligned}$$
(A.13)

for \(\mathbb {P}\)-almost all \(\omega \in \Omega \). We define

$$\begin{aligned} \phi _N^{\omega }(\beta ) := \dfrac{1}{L_N} \sum \limits _{j=1}^{\infty } \mathrm {e}^{-\beta E_N^{j,\omega }} = \int \limits _{(0,\infty )} \mathrm {e}^{-\beta E} \, {\mathcal {N}}_N^{\omega }(\mathrm {d} E)\ . \end{aligned}$$

The relation between \(\phi _N^{\omega }(\beta )\) and \(\rho \) is simply

$$\begin{aligned} \rho&= \dfrac{1}{L_N} \sum \limits _{j = 1}^{\infty } \left( \mathrm {e}^{\beta ( E_N^{j,{\omega }} - \mu _N^{\omega })} -1 \right) ^{-1} = \dfrac{1}{L_N} \sum \limits _{j= 1}^{\infty } \mathrm {e}^{-\beta E_N^{j,\omega }} \dfrac{1}{ \mathrm {e}^{- \beta \mu _N^{\omega }} - \mathrm {e}^{-\beta E_N^{j,\omega }} } \\&\le \left( \dfrac{1}{L_N} \sum \limits _{j = 1}^{\infty } \mathrm {e}^{- \beta E_N^{j,{\omega }}} \right) \dfrac{\mathrm {e}^{\beta \mu _N^{\omega }}}{1 - \mathrm {e}^{-\beta (E_N^{1,{\omega }} - \mu _N^{\omega })}} = \phi _N^{\omega }(\beta ) \dfrac{\mathrm {e}^{\beta \mu _N^{\omega }}}{1 - \mathrm {e}^{-\beta (E_N^{1,{\omega }} - \mu _N^{\omega })}} \ . \end{aligned}$$

Consequently, we conclude that

$$\begin{aligned} \rho - \rho \mathrm {e}^{-\beta E_N^{1,\omega }} \mathrm {e}^{\beta \mu _N^{\omega }} \le \phi _N^{\omega }(\beta ) \mathrm {e}^{\beta \mu _N^{\omega }} \end{aligned}$$

and

$$\begin{aligned} \beta ^{-1} \ln \left( \dfrac{\rho }{\phi _N^{\omega }(\beta ) + \rho \mathrm {e}^{-\beta E_N^{1,\omega }}} \right)&\le \mu _N^{\omega } \ . \end{aligned}$$
(A.14)

Due to (A.13) we have \(\limsup _{N \rightarrow \infty } \phi ^{\omega }_N(\beta ) < \infty \). Moreover, since \(\mu _N^{\omega }< E_N^{1,\omega }\) for all \(N \in \mathbb {N}\) and since \(E_N^{1,\omega }\) converges \(\mathbb {P}\)-almost surely to 0, we obtain \(\mathbb {P}\)-almost surely

$$\begin{aligned} \beta ^{-1} \ln \left( \dfrac{\rho }{\limsup \limits _{N \rightarrow \infty } \phi _N^{\omega }(\beta ) + \rho } \right) \le \liminf \limits _{N \rightarrow \infty } \mu _N^{\omega }\le \limsup \limits _{N \rightarrow \infty } \mu _N^{\omega }\le 0 \ . \end{aligned}$$

This shows that there exists a set \({{\widetilde{\Omega }}} \subset \Omega \) with measure \(\mathbb {P}({{\widetilde{\Omega }}}) = 1\) such that for all \(\omega \in {{\widetilde{\Omega }}}\) equation (A.11) from Lemma A.5 holds and the sequence \((\mu ^{\omega }_{N})_{N=1}^{\infty }\) has at least one accumulation point \(\mu _{\infty }^{\omega } \in \mathbb {R}\).

Now, for \(\omega \in {{\widetilde{\Omega }}}\) consider the case where \(\rho < \rho _c(\beta )\): Since

$$\begin{aligned} (-\infty ,0) \rightarrow \mathbb {R}, \quad \mu \mapsto \int \limits _{(0,\infty )} {\mathcal {B}}(E - \mu ) \, {\mathcal {N}}_{\infty } (\mathrm {d} E) \end{aligned}$$
(A.15)

is a strictly increasing function, there is a unique, non-random solution \({{\widehat{\mu }}} < 0\) to

$$\begin{aligned} \rho = \int \limits _{(0,\infty )} {\mathcal {B}}(E - \mu ) \, \mathcal N_{\infty } (\mathrm {d} E) \ . \end{aligned}$$
(A.16)

Suppose to the contrary that the accumulation point \(\mu _{\infty }^{\omega }\) is zero. Then there exists a subsequence \((\mu _{N_j}^{\omega })_{j=1}^{\infty }\) which converges to 0. It follows that

$$\begin{aligned} \dfrac{{{\widehat{\mu }}} }{2} < \mu _{N_j}^{\omega } \end{aligned}$$
(A.17)

for all but finitely many \(j \in \mathbb {N}\). Because

$$\begin{aligned} (-\infty ,0) \rightarrow \mathbb {R}, \quad \mu \mapsto \int \limits _{(0,\infty )} {\mathcal {B}}(E - \mu ) \, \mathcal N_N^{\omega }(\mathrm {d} E) \end{aligned}$$
(A.18)

is strictly increasing,

$$\begin{aligned} \int \limits _{(0,\infty )} {\mathcal {B}}(E-{\widehat{\mu }}/2)\, \mathcal N_{N_j}^{\omega }(\mathrm {d} E) < \int \limits _{(0,\infty )} \mathcal B(E-\mu _{N_j}^{\omega }) \, {\mathcal {N}}_{N_j}^{\omega }(\mathrm {d} E) = \rho \end{aligned}$$
(A.19)

for all but finitely many \(j \in \mathbb {N}\). However, due to (A.16) and employing Lemma A.5

$$\begin{aligned} \begin{aligned} \rho&= \int \limits _{(0,\infty )} {\mathcal {B}}(E - {{\widehat{\mu }}}) \, {\mathcal {N}}_{\infty }(\mathrm {d} E) \\&< \int \limits _{(0,\infty )} {\mathcal {B}}(E-{\widehat{\mu }}/2) \, {\mathcal {N}}_{\infty } (\mathrm {d} E) \\&= \lim \limits _{N \rightarrow \infty } \int \limits _{(0,\infty )} \mathcal B(E-{\widehat{\mu }}/2)\, {\mathcal {N}}_{N}^{\omega } \, (\mathrm {d} E) \ , \end{aligned} \end{aligned}$$
(A.20)

which is a contradiction to (A.19). As a consequence, any accumulation point \(\mu _{\infty }^{\omega }\) is strictly smaller than 0. In addition, using Lemma A.5, \(m \in \mathbb {N}\),

$$\begin{aligned} \limsup \limits _{j \rightarrow \infty } \int \limits _{(0,\infty )} \mathcal B(E-\mu _{N_j}^\omega ) {\mathcal {N}}_{N_j}^{\omega }(\mathrm {d}E)&\le \lim \limits _{j \rightarrow \infty } \int \limits _{(0,\infty )} {\mathcal {B}}(E - \mu _{\infty }^{\omega } + m^{-1} \mu _{\infty }^{\omega }/2) \, \mathcal N_{N_j}^{\omega }(\mathrm {d}E) \\&= \int \limits _{(0,\infty )} {\mathcal {B}}(E - \mu _{\infty }^{\omega } + m^{-1}\mu _{\infty }^{\omega }/2) \, {\mathcal {N}}_{\infty }(\mathrm {d}E) \end{aligned}$$

and

$$\begin{aligned} \liminf \limits _{j \rightarrow \infty } \int \limits _{(0,\infty )} {\mathcal {B}}(E - \mu _{N_j}^{\omega }) \, {\mathcal {N}}_{N_j}^{\omega }(\mathrm {d}E)&\ge \lim \limits _{j \rightarrow \infty } \int \limits _{(0,\infty )} {\mathcal {B}}(E - \mu _{\infty }^{\omega } - m^{-1} \mu _{\infty }^{\omega }/2) \, {\mathcal {N}}_{N_j}^{\omega }(\mathrm {d}E) \\&= \int \limits _{(0,\infty )} {\mathcal {B}}(E - \mu _{\infty }^{\omega } - m^{-1} \mu _{\infty }^{\omega }/2)\, {\mathcal {N}}_{\infty }(\mathrm {d}E)\ . \end{aligned}$$

Hence, since \(m \in \mathbb {N}\) was arbitrary,

$$\begin{aligned} \lim \limits _{j \rightarrow \infty } \int \limits _{(0,\infty )} {\mathcal {B}}(E - \mu _{N_j}^{\omega }) \, {\mathcal {N}}_{N_j}^{\omega }(\mathrm {d}E)&= \int \limits _{(0,\infty )} {\mathcal {B}}(E - \mu _{\infty }^{\omega }) \, {\mathcal {N}}_{\infty }(\mathrm {d}E) \ . \end{aligned}$$

We conclude that

$$\begin{aligned} \begin{aligned} \int \limits _{(0,\infty )} {\mathcal {B}}(E - {{\widehat{\mu }}}) \, \mathcal N_{\infty }(\mathrm {d} E)&= \rho = \lim \limits _{j \rightarrow \infty } \int \limits _{(0,\infty )} {\mathcal {B}}(E - \mu _{N_j}^{\omega }) \, {\mathcal {N}}_{N_j}^{\omega }(\mathrm {d} E) \\&= \int \limits _{(0,\infty )} {\mathcal {B}}(E - \mu _{\infty }^{\omega }) \, {\mathcal {N}}_{\infty }(\mathrm {d} E)\ , \end{aligned} \end{aligned}$$
(A.21)

holds \(\mathbb {P}\)-almost surely for all convergent subsequences of \((\mu ^{\omega }_{N})_{N=1}^{\infty }\) with corresponding limit point \(\mu _{\infty }^{\omega }\). Hence, due to the strict monotonicity of the function (A.15) and due to (A.21), any accumulation point \(\mu _{\infty }^{\omega }\) is equal to \(\widehat{\mu }\). In other words, the sequence \((\mu ^{\omega }_{N})_{N=1}^{\infty }\) converges to the non-random limit \({{\widehat{\mu }}} < 0\).

In the next step we assume that \(\rho \ge \rho _c(\beta )\): Suppose to the contrary that the sequence \((\mu ^{\omega }_{N})_{N=1}^{\infty }\) has an accumulation point \(\mu _{\infty }^{\omega } < 0\) with the subsequence \((\mu _{N_j}^{\omega })_{j=1}^{\infty }\) converging to it. As in (A.21) we get

$$\begin{aligned} \rho = \lim \limits _{j \rightarrow \infty } \int \limits _{(0,\infty )} \mathcal B(E - \mu _{N_j}^\omega ) \, {\mathcal {N}}_{N_j}^{\omega }(\mathrm {d} E) = \int \limits _{(0,\infty )} {\mathcal {B}}(E - \mu _{\infty }^{\omega }) \, {\mathcal {N}}_{\infty } (\mathrm {d} E) \ge \rho _c(\beta ) \ . \end{aligned}$$

However, one also has

$$\begin{aligned} \int \limits _{(0,\infty )} {\mathcal {B}}(E - \mu _{\infty }^{\omega }) \, {\mathcal {N}}_{\infty }(\mathrm {d} E) < \sup \limits _{\mu \in (-\infty , 0)} \left\{ \int \limits _{(0,\infty )} {\mathcal {B}}(E - \mu ) \, \mathcal N_{\infty }(\mathrm {d} E) \right\} = \rho _c(\beta ) \ , \end{aligned}$$

yielding a contradiction. Since this holds for any subsequence, we conclude the statement. \(\square \)

The next lemma is essential in the proof of generalized BEC in the supercritical region \(\rho > \rho _c(\beta )\). We do not know whether the limit of \(\int \limits _{(\epsilon ,\infty )} \mathcal B(E-\mu _N^{\omega }) \, {\mathcal {N}}_N^{\omega } (\mathrm {d} E)\) as \(N\rightarrow \infty \) exists \(\mathbb {P}\)-almost surely. Therefore we state bounds on the \(\limsup \) and \(\liminf \), which, most importantly, coincide in the limit \(\epsilon \searrow 0\).

Lemma A.7

If \(\rho \ge \rho _c(\beta )\) and \(\epsilon > 0\), then \(\mathbb {P}\)-almost surely,

$$\begin{aligned} \limsup \limits _{N \rightarrow \infty } \int \limits _{(\epsilon ,\infty )} {\mathcal {B}}(E-\mu _N^{\omega }) \, {\mathcal {N}}_N^{\omega } (\mathrm {d} E)&\le \int \limits _{(\epsilon ,\infty )} {\mathcal {B}}(E) \, \mathcal N_{\infty } (\mathrm {d} E) + \dfrac{2}{\beta \epsilon } \mathcal N_{\infty }^{\mathrm {I}}(\epsilon ) \ , \nonumber \\ \liminf \limits _{N \rightarrow \infty } \int \limits _{(\epsilon ,\infty )} {\mathcal {B}}(E-\mu _N^{\omega }) \, {\mathcal {N}}_N^{\omega } (\mathrm {d} E)&\ge \int \limits _{(\epsilon ,\infty )} {\mathcal {B}}(E) \, \mathcal N_{\infty } (\mathrm {d} E) - \dfrac{4}{\beta \epsilon } \mathcal N_{\infty }^{\mathrm {I}}(2\epsilon ) \ , \end{aligned}$$
(A.22)

and

$$\begin{aligned} \begin{aligned}&\lim \limits _{\epsilon \searrow 0} \limsup \limits _{N \rightarrow \infty } \int \limits _{(\epsilon ,\infty )} {\mathcal {B}}(E-\mu _N^{\omega }) \, {\mathcal {N}}_N^{\omega } (\mathrm {d} E) \\&\quad = \, \lim \limits _{\epsilon \searrow 0} \liminf \limits _{N \rightarrow \infty } \int \limits _{(\epsilon ,\infty )} {\mathcal {B}}(E-\mu _N^{\omega }) \, {\mathcal {N}}_N^{\omega } (\mathrm {d} E) = \rho _c(\beta ) \ . \end{aligned} \end{aligned}$$
(A.23)

Proof

In a first step we note that \(\mathbb {P}\)-almost surely and for all \(E_2> \epsilon > 0\)

$$\begin{aligned} \lim \limits _{N \rightarrow \infty } \int \limits _{\mathbb {R}} g_{\epsilon }^{(E_2)}(E) {\mathcal {B}}(E-\mu _N^{\omega }) \, \mathcal N_N^{\omega } (\mathrm {d} E) = \int \limits _{\mathbb {R}} g_{\epsilon }^{(E_2)}(E) {\mathcal {B}}(E) \, {\mathcal {N}}_{\infty } (\mathrm {d} E) \end{aligned}$$
(A.24)

where

$$\begin{aligned} g_{\epsilon }^{(E_2)}(E):= {\left\{ \begin{array}{ll} 0 \quad &{} \text { if }\, E< \epsilon /2 \\ \dfrac{E - \epsilon /2}{\epsilon /2} &{} \text { if }\, \epsilon /2 \le E \le \epsilon \\ 1 \quad &{} \text { if }\, \epsilon< E \le E_2 \\ 1 - \dfrac{E - E_2}{E_2} \quad &{} \text { if }\, E_2< E < 2 E_2 \\ 0 \quad &{} \text { if } E \ge 2 E_2 \end{array}\right. } \ . \end{aligned}$$
(A.25)

This can be shown as follows: One has

$$\begin{aligned}&\left| \, \int \limits _{\mathbb {R}} g_{\epsilon }^{(E_2)}(E) \mathcal B(E-\mu _N^{\omega }) \, {\mathcal {N}}_N^{\omega } (\mathrm {d} E) - \int \limits _{\mathbb {R}} g_{\epsilon }^{(E_2)}(E) {\mathcal {B}}(E) \, {\mathcal {N}}_{\infty } (\mathrm {d} E) \, \right| \end{aligned}$$
(A.26)
$$\begin{aligned}&\quad \le \, \left| \, \int \limits _{\mathbb {R}} g_{\epsilon }^{(E_2)}(E) \left( {\mathcal {B}}(E-\mu _N^{\omega }) - {\mathcal {B}}(E) \right) \, {\mathcal {N}}_N^{\omega }(\mathrm {d} E) \, \right| \end{aligned}$$
(A.27)
$$\begin{aligned}&\qquad + \, \left| \, \int \limits _{\mathbb {R}} g_{\epsilon }^{(E_2)}(E) {\mathcal {B}}(E) \mathbb \, \big [ \mathcal N_N^{\omega }(\mathrm {d} E) - {\mathcal {N}}_{\infty }(\mathrm {d} E) \big ] \, \right| \ . \end{aligned}$$
(A.28)

For the term in line (A.27) we get \(\mathbb {P}\)-almost surely, using that \(\mathbb {P}\)-almost surely \(\mu _N^{\omega }\) converges to 0 and (2.8),

$$\begin{aligned}&\lim \limits _{N \rightarrow \infty } \left| \, \int \limits _{\mathbb {R}} g_{\epsilon }^{(E_2)}(E)\dfrac{\mathrm {e}^{\beta E } - \mathrm {e}^{\beta ( E - \mu _N^{\omega } ) }}{\left( \mathrm {e}^{\beta ( E - \mu _N^{\omega } ) } - 1 \right) \cdot \Big ( \mathrm {e}^{\beta E } - 1 \Big )} \, {\mathcal {N}}_N^{\omega }(\mathrm {d} E) \, \right| = 0 \ . \end{aligned}$$

The term in line (A.28) \(\mathbb {P}\)-almost surely converges to zero for \(N \rightarrow \infty \) by vague convergence.

Next, we obtain, for all \(E_2 > \epsilon \) and all \(N \in \mathbb {N}\),

$$\begin{aligned} \int \limits _{(\epsilon ,\infty )}&{\mathcal {B}}(E-\mu _N^{\omega }) \, {\mathcal {N}}_N^{\omega } (\mathrm {d} E) \\ = \,&\int \limits _{(\epsilon ,E_2]} {\mathcal {B}}(E-\mu _N^{\omega })\, {\mathcal {N}}_N^{\omega } (\mathrm {d} E) + \int \limits _{(E_2,\infty )} {\mathcal {B}}(E-\mu _N^{\omega }) \, {\mathcal {N}}_N^{\omega } (\mathrm {d} E) \ . \end{aligned}$$

On the one hand, by (A.24) we have \(\mathbb {P}\)-almost surely,

$$\begin{aligned} \limsup \limits _{N \rightarrow \infty } \int \limits _{(\epsilon ,E_2]} \mathcal B(E-\mu _N^{\omega }) \, {\mathcal {N}}_N^{\omega } (\mathrm {d} E)&\le \lim \limits _{N \rightarrow \infty } \int \limits _{\mathbb {R}} g_{\epsilon }^{(E_2)}(E) {\mathcal {B}}(E-\mu _N^{\omega }) \, \mathcal N_N^{\omega } (\mathrm {d} E) \\&= \int \limits _{\mathbb {R}} g_{\epsilon }^{(E_2)}(E) {\mathcal {B}}(E) \, {\mathcal {N}}_{\infty } (\mathrm {d} E) \ . \end{aligned}$$

As for the second integral, we obtain \(\mathbb {P}\)-almost surely,

$$\begin{aligned} \begin{aligned} \limsup \limits _{N \rightarrow \infty } \int \limits _{(E_2,\infty )} \mathcal B(E-\mu _N^{\omega }) \, {\mathcal {N}}_N^{\omega } (\mathrm {d} E)&\le \limsup \limits _{N \rightarrow \infty } \int \limits _{[E_2,\infty )} \mathcal B(E-\epsilon /2) \, {\mathcal {N}}_N^{\omega } (\mathrm {d} E) \\&\le \beta \pi ^{-1} \int \limits _{E_2}^{\infty } E^{1/2} \big [\mathcal B(E-\epsilon /2)\big ]^{2} \mathrm {e}^{\beta (E - \epsilon /2)} \, \mathrm {d} E \end{aligned} \end{aligned}$$

where the last step is as in the proof of Lemma A.5 (with \(\mu = \epsilon /2\)).

We conclude that

$$\begin{aligned} \limsup \limits _{N \rightarrow \infty }&\int \limits _{(\epsilon ,\infty )}{\mathcal {B}}(E-\mu _N^{\omega }) \, {\mathcal {N}}_N^{\omega } (\mathrm {d} E) \\&\le \int \limits _{\mathbb {R}} g_{\epsilon }^{(E_2)}(E) {\mathcal {B}}(E) \, {\mathcal {N}}_{\infty } (\mathrm {d} E) + \beta \pi ^{-1/2}\int \limits _{E_2}^{\infty } E^{1/2} \big [\mathcal B(E-\epsilon /2)\big ]^2 \mathrm {e}^{\beta (E - \epsilon /2)} \, \mathrm {d} E \end{aligned}$$

for all \(E_2 > \epsilon \) and hence

$$\begin{aligned} \limsup \limits _{N \rightarrow \infty }&\int \limits _{(\epsilon ,\infty )} {\mathcal {B}}(E-\mu _N^{\omega }) \, {\mathcal {N}}_N^{\omega } (\mathrm {d} E) \\ \le \,&\lim \limits _{E_2 \rightarrow \infty } \int \limits _{\mathbb {R}} g_{\epsilon }^{(E_2)}(E) {\mathcal {B}}(E) \, {\mathcal {N}}_{\infty } (\mathrm {d} E) \\&+ \, \lim \limits _{E_2 \rightarrow \infty } \beta \pi ^{-1/2}\int \limits _{E_2}^{\infty } E^{1/2} \big [\mathcal B(E-\epsilon /2)\big ]^2 \mathrm {e}^{\beta (E - \epsilon /2)} \, \mathrm {d} E \\ \le \,&\lim \limits _{E_2 \rightarrow \infty } \int \limits _{[\epsilon /2,2E_2]} {\mathcal {B}}(E) \, {\mathcal {N}}_{\infty } (\mathrm {d} E) \\ \le \,&\int \limits _{(\epsilon ,\infty )} {\mathcal {B}}(E) \, \mathcal N_{\infty } (\mathrm {d} E) + \dfrac{2}{\beta \epsilon } \mathcal N_{\infty }^{\mathrm {I}}(\epsilon ) \ . \end{aligned}$$

On the other hand, for all \(E_2 > \epsilon \) and all \(N \in \mathbb {N}\),

$$\begin{aligned} \int \limits _{(\epsilon ,\infty )}&{\mathcal {B}}(E-\mu _N^{\omega }) \, {\mathcal {N}}_N^{\omega } (\mathrm {d} E) \\ \ge \,&\int \limits _{\mathbb {R}} g_{\epsilon }^{(E_2)}(E) \mathcal B(E-\mu _N^{\omega }) \, {\mathcal {N}}_N^{\omega } (\mathrm {d} E) - \int \limits _{[\epsilon /2,\epsilon ]} g_{\epsilon }^{(E_2)}(E) \mathcal B(E-\mu _N^{\omega }) \, {\mathcal {N}}_N^{\omega } (\mathrm {d} E) \ . \end{aligned}$$

For the first integral, by (A.24), \(\mathbb {P}\)-almost surely

$$\begin{aligned} \lim \limits _{N \rightarrow \infty } \int \limits _{\mathbb {R}} g_{\epsilon }^{(E_2)}(E) {\mathcal {B}}(E-\mu _N^{\omega }) \, \mathcal N_N^{\omega } (\mathrm {d} E)&= \int \limits _{\mathbb {R}} g_{\epsilon }^{(E_2)}(E) {\mathcal {B}}(E) \, {\mathcal {N}}_{\infty } (\mathrm {d} E) \\&\ge \int \limits _{(\epsilon ,E_2]} {\mathcal {B}}(E) \, \mathcal N_{\infty } (\mathrm {d} E) \ . \end{aligned}$$

Since \(\mu _N^{\omega }\) converges \(\mathbb {P}\)-almost surely to zero and \(\, {\mathcal {N}}_N^{\omega }\) converges \(\mathbb {P}\)-almost surely vaguely to \({\mathcal {N}}_{\infty }\), the second integral \(\mathbb {P}\)-almost surely converges to

$$\begin{aligned} \limsup \limits _{N \rightarrow \infty }&\int \limits _{[\epsilon /2,\epsilon ]} g_{\epsilon }^{(E_2)}(E) {\mathcal {B}}(E-\mu _N^{\omega }) \, \mathcal N_N^{\omega } (\mathrm {d} E) \\ \le \,&\limsup \limits _{N \rightarrow \infty } \int \limits _{[\epsilon /2,\epsilon ]} g_{\epsilon }^{(E_2)}(E) \mathcal B(E-\epsilon /4) \, {\mathcal {N}}_N^{\omega } (\mathrm {d} E) \\ \le \,&{\mathcal {B}}(\epsilon /4) \int \limits _{\mathbb {R}} g_{\epsilon }^{(\epsilon )}(E) \, {\mathcal {N}}_{\infty } \, (\mathrm {d} E) \\ \le \,&\dfrac{4}{\beta \epsilon } \mathcal N_{\infty }^{\mathrm {I}}(2 \epsilon ) \ . \end{aligned}$$

We conclude that, \(\mathbb {P}\)-almost surely,

$$\begin{aligned} \liminf \limits _{N \rightarrow \infty } \int \limits _{(\epsilon ,\infty )} {\mathcal {B}}(E-\mu _N^{\omega }) \, {\mathcal {N}}_N^{\omega } (\mathrm {d} E) \ge \int \limits _{(\epsilon ,E_2]} {\mathcal {B}}(E) \, \mathcal N_{\infty } (\mathrm {d} E) - \dfrac{4}{\beta \epsilon } \mathcal N_{\infty }^{\mathrm {I}}(2 \epsilon ) \end{aligned}$$

for all \(E_2 > \epsilon \) and hence

$$\begin{aligned} \liminf \limits _{N \rightarrow \infty } \int \limits _{(\epsilon ,\infty )} {\mathcal {B}}(E-\mu _N^{\omega })\, {\mathcal {N}}_N^{\omega } (\mathrm {d} E) \ge \int \limits _{(\epsilon ,\infty )} {\mathcal {B}}(E) \, \mathcal N_{\infty } (\mathrm {d} E) - \dfrac{4}{\beta \epsilon } \mathcal N_{\infty }^{\mathrm {I}}(2 \epsilon ) \ . \end{aligned}$$

Finally, with Theorem 2.4, we obtain

$$\begin{aligned} \lim \limits _{\epsilon \searrow 0} \dfrac{4}{\beta \epsilon } \mathcal N_{\infty }^{\mathrm {I}}(2 \epsilon ) \le \lim \limits _{\epsilon \searrow 0} \dfrac{4}{\beta \epsilon } {{\widetilde{M}}} \dfrac{4! (2 \epsilon )^2}{(\pi \nu )^4} = 0 \ , \end{aligned}$$

which, taking Lemma A.4 into account, shows that \(\mathbb {P}\)-almost surely

$$\begin{aligned} \begin{aligned} \lim \limits _{\epsilon \searrow 0} \limsup \limits _{N \rightarrow \infty } \int \limits _{(\epsilon ,\infty )} {\mathcal {B}}(E-\mu _N^{\omega }) \, {\mathcal {N}}_N^{\omega } (\mathrm {d} E)&= \lim \limits _{\epsilon \searrow 0} \liminf \limits _{N \rightarrow \infty } \int \limits _{(\epsilon ,\infty )} {\mathcal {B}}(E-\mu _N^{\omega }) \, {\mathcal {N}}_N^{\omega } (\mathrm {d} E) \\&= \lim \limits _{\epsilon \searrow 0} \int \limits _{(\epsilon ,\infty )} {\mathcal {B}}(E) \, {\mathcal {N}}_{\infty } (\mathrm {d} E) \\&= \rho _c(\beta ) \ . \end{aligned} \end{aligned}$$

\(\square \)

Finally, we present a proof of generalized BEC and we follow in parts the proof in [12].

Proof of Theorem 2.7

Assume firstly that \(\rho \ge \rho _c(\beta )\): According to Lemma A.6, the sequence \((\mu ^{\omega }_{N})_{N=1}^{\infty }\) converges to 0 \(\mathbb {P}\)-almost surely. Also, for all \(\epsilon > 0\), all \(N \in \mathbb {N}\) and \(\mathbb {P}\)-almost all \(\omega \in \Omega \) one has

$$\begin{aligned} \rho = \int \limits _{(0,\epsilon ]} {\mathcal {B}}(E-\mu _N^{\omega }) \,{\mathcal {N}}_N^{\omega } (\mathrm {d} E) + \int \limits _{(\epsilon ,\infty )} {\mathcal {B}}(E-\mu _N^{\omega }) \,{\mathcal {N}}_N^{\omega } (\mathrm {d} E) \end{aligned}$$

and hence

$$\begin{aligned} \begin{aligned} \rho _0 (\beta )&= \lim \limits _{\epsilon \searrow 0} \liminf \limits _{N \rightarrow \infty } \int \limits _{(0,\epsilon ]} \mathcal B(E-\mu _N^{\omega }) \,{\mathcal {N}}_N^{\omega } (\mathrm {d} E) \\&= \rho - \lim \limits _{\epsilon \searrow 0} \limsup \limits _{N \rightarrow \infty } \int \limits _{(\epsilon ,\infty )} {\mathcal {B}}(E-\mu _N^{\omega }) \,{\mathcal {N}}_N^{\omega } (\mathrm {d} E) \ . \end{aligned} \end{aligned}$$
(A.29)

Consequently, by (A.23),

$$\begin{aligned} \rho _0(\beta ) = \rho - \rho _c(\beta ) \end{aligned}$$

holds \(\mathbb {P}\)-almost surely, implying the statement.

In a next step assume that \(\rho < \rho _c(\beta )\): According to Lemma A.6, the sequence \((\mu ^{\omega }_{N})_{N=1}^{\infty }\)\(\mathbb {P}\)-almost surely converges to a limit \({{\widehat{\mu }}} < 0\). Consequently, \(\mathbb {P}\)-almost surely there exists a \(\delta > 0\) such that \(- \mu _N^{\omega } > \delta \) for all but finitely many \(N \in \mathbb {N}\). Hence, \(\mathbb {P}\)-almost surely, with \(g_{\epsilon , \epsilon }(E)\) defined as in (A.12),

$$\begin{aligned} \lim \limits _{\epsilon \searrow 0} \lim \limits _{N \rightarrow \infty } \dfrac{1}{N} \sum \limits _{j : E_N^{j,\omega } \le \epsilon } n_N^{j,\omega }&= \rho ^{-1} \lim \limits _{\epsilon \searrow 0} \lim \limits _{N \rightarrow \infty } \int \limits _{(0,\epsilon ]} \mathcal B(E-\mu _N^{\omega }) \,{\mathcal {N}}_N^{\omega } (\mathrm {d} E) \\&\le \rho ^{-1} \lim \limits _{\epsilon \searrow 0} \lim \limits _{N \rightarrow \infty } \int \limits _{(0,\epsilon ]} {\mathcal {B}}(E+\delta ) \,\mathcal N_N^{\omega } (\mathrm {d} E) \\&\le \rho ^{-1} {\mathcal {B}}(\delta ) \lim \limits _{\epsilon \searrow 0} \lim \limits _{N \rightarrow \infty } \int \limits _{\mathbb {R}} g_{\epsilon ,\epsilon }(E) \, {\mathcal {N}}_N^{\omega } (\mathrm {d} E) \\&= \rho ^{-1} {\mathcal {B}}(\delta )\lim \limits _{\epsilon \searrow 0} \int \limits _{\mathbb {R}} g_{\epsilon ,\epsilon }(E) \, \mathcal N_{\infty } (\mathrm {d} E) \\&\le \rho ^{-1} {\mathcal {B}}(\delta ) \lim \limits _{\epsilon \searrow 0} {\mathcal {N}}_{\infty }^{\mathrm {I}} (2 \epsilon ) \\&= 0 \end{aligned}$$

employing \(\mathbb {P}\)-almost sure vague convergence of \(\mathcal N_N^{\omega }\) to \({\mathcal {N}}_{\infty }\) and Theorem 2.4. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kerner, J., Pechmann, M. & Spitzer, W. On Bose–Einstein Condensation in the Luttinger–Sy Model with Finite Interaction Strength. J Stat Phys 174, 1346–1371 (2019). https://doi.org/10.1007/s10955-019-02240-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-019-02240-4

Keywords

Navigation