Skip to main content
Log in

An Analytical Study of Fractional Klein–Kramers Approximations for Describing Anomalous Diffusion of Energetic Particles

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In this article, anomalous transport models of energetic particles in space plasmas are developed by deriving the fractional force-less Fokker–Planck equation and the fractional diffusion-advection equation from the Klein–Kramers equation. Analytical solutions of the space-time fractional equations are obtained by use of the Caputo and the Riesz fractional derivatives with the Laplace–Fourier technique. The solutions are given in terms of Fox’s H-function and the profiles of the particles densities are discussed in each case for different values of fractional orders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Crank, J.: The Mathematics of Diffusion. Oxford University Press, Oxford (1979)

    MATH  Google Scholar 

  2. Kazakevičius, R., Ruseckas, J.: Anomalous diffusion in nonhomogeneous media: power spectral density of signals generated by time-subordinated nonlinear langevin equations. Physica A 438, 210–222 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Klages, R., Radons, G., Sokolov, I.M.: Anomalous Transport: Foundations and Applications. Wiley, New York (2008)

    Book  Google Scholar 

  4. Compte, A.: Continuous time random walks on moving fluids. Phys. Rev. E 55(6), 6821 (1997)

    Article  ADS  Google Scholar 

  5. Uchaikin, V.V.: Anomalous transport equations and their application to fractal walking. Physica A 255(1), 65–92 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  6. Li, Y., Farrher, G., Kimmich, R.: Sub-and superdiffusive molecular displacement laws in disordered porous media probed by nuclear magnetic resonance. Phys. Rev. E 74(6), 066309 (2006)

    Article  ADS  Google Scholar 

  7. Goychuk, I.: Fractional-time random walk subdiffusion and anomalous transport with finite mean residence times: faster, not slower. Phys. Rev. E 86(2), 021113 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  8. Metzler, R., Jeon, J.-H., Cherstvy, A.G., Barkai, E.: Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. Phys. Chem. Chem. Phys. 16(44), 24128–24164 (2014)

    Article  Google Scholar 

  9. Anderson, J., Kim, E., Moradi, S.: A fractional Fokker-Planck model for anomalous diffusion. Phys. Plasmas 21(12), 122109 (2014)

    Article  ADS  Google Scholar 

  10. Peseckis, F.E.: Statistical dynamics of stable processes. Phys. Rev. A 36(2), 892 (1987)

    Article  ADS  Google Scholar 

  11. Le Roux, J.A., Webb, G.M., Shalchi, A., Zank, G.P.: A generalized nonlinear guiding center theory for the collisionless anomalous perpendicular diffusion of cosmic rays. Astrophys. J. 716(1), 671 (2010)

    Article  ADS  Google Scholar 

  12. Shalchi, A., Kourakis, I.: A new theory for perpendicular transport of cosmic rays. Astron. Astrophys. 470(2), 405–409 (2007)

    Article  ADS  MATH  Google Scholar 

  13. Perri, S., Zimbardo, G.: Evidence of superdiffusive transport of electrons accelerated at interplanetary shocks. Astrophys. J. Lett. 671(2), L177 (2007)

    Article  ADS  Google Scholar 

  14. Perri, S., Zimbardo, G.: Superdiffusive transport of electrons accelerated at corotating interaction regions. J. Geophys. Res. 113(A3) (2008)

  15. Sugiyama, T., Shiota, D.: Sign for super-diffusive transport of energetic ions associated with a coronal-mass-ejection-driven interplanetary shock. Astrophys. J. Lett. 731(2), L34 (2011)

    Article  ADS  Google Scholar 

  16. Zimbardo, G., Amato, E., Bovet, A., Effenberger, F., Fasoli, A., Fichtner, H., Furno, I., Gustafson, K., Ricci, P., Perri, S.: Superdiffusive transport in laboratory and astrophysical plasmas. J. Plasma Phys. 81(06), 495810601 (2015)

    Article  Google Scholar 

  17. Zimbardo, G., Pommois, P., Veltri, P.: Superdiffusive and subdiffusive transport of energetic particles in solar wind anisotropic magnetic turbulence. Astrophys. J. Lett. 639(2), L91 (2006)

    Article  ADS  Google Scholar 

  18. Trotta, E.M., Zimbardo, G.: Quasi-ballistic and superdiffusive transport for impulsive solar particle events. Astron. Astrophys. 530, A130 (2011)

    Article  ADS  Google Scholar 

  19. Perri, S., Zimbardo, G.: Superdiffusive shock acceleration. Astrophys. J. 750(2), 87 (2012)

    Article  ADS  Google Scholar 

  20. Zimbardo, G., Perri, S.: From Lévy walks to superdiffusive shock acceleration. Astrophys. J. 778(1), 35 (2013)

    Article  ADS  Google Scholar 

  21. Stern, R., Effenberger, F., Fichtner, H., Schäfer, T.: The space-fractional diffusion-advection equation: analytical solutions and critical assessment of numerical solutions. Fract. Calc. Appl. Anal. 17(1), 171–190 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Tawfik, A.M., Fichtner, H., Schlickeiser, R., Elhanbaly, A.: Analytical solutions of the space–time fractional telegraph and advection–diffusion equations. Physica A 491, 810–819 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  23. Tawfik, A.M., Fichtner, H., Elhanbaly, A., Schlickeiser, R.: Analytical solution of the space–time fractional hyperdiffusion equation. Physica A 510, 178–187 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  24. Tawfik, A.M., Fichtner, H., Schlickeiser, R., Elhanbaly, A.: Analytical study of fractional equations describing anomalous diffusion of energetic particles. In: Journal of Physics: Conference Series, vol. 869, p. 012050. IOP Publishing, Bristol (2017)

  25. Barkai, E.: Stable equilibrium based on Lévy statistics: stochastic collision models approach. Phys. Rev. E 68(5), 055104 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  26. Moradi, S., Anderson, J., Weyssow, B.: A theory of non-local linear drift wave transport. Phys. Plasmas 18(6), 062106 (2011)

    Article  ADS  Google Scholar 

  27. Moradi, S., Anderson, J.: Non-local gyrokinetic model of linear ion-temperature-gradient modes. Phys. Plasmas 19(8), 082307 (2012)

    Article  ADS  Google Scholar 

  28. Litvinenko, Y.E., Effenberger, F.: Analytical solutions of a fractional diffusion-advection equation for solar cosmic-ray transport. Astrophys. J. 796(2), 125 (2014)

    Article  ADS  Google Scholar 

  29. Risken, H.: The Fokker-Planck Equation. Springer Series in Synergetics, vol. 18. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  30. Van Kampen, N.G.: Stochastic processes in chemistry and physics. Amsterdam 1, 120–127 (1981)

    MATH  Google Scholar 

  31. Caputo, M.: Linear models of dissipation whose Q is almost frequency independent. Geophys. J. Int. 13(5), 529–539 (1967)

    Article  ADS  Google Scholar 

  32. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Yverdon (1993)

    MATH  Google Scholar 

  33. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, vol. 198. Academic Press, Cambridge (1998)

    MATH  Google Scholar 

  34. Metzler, R., Klafter, J., McClintock, P.V.E., Broomhead, D.S, Mullin, T., Luchinskaya, E.A: From the Langevin equation to the fractional Fokker-Planck equation. In: AIP Conference Proceedings, vol. 502, pp. 375–380. AIP (2000)

  35. Metzler, R., Klafter, J.: Subdiffusive transport close to thermal equilibrium: from the Langevin equation to fractional diffusion. Phys. Rev. E 61(6), 6308 (2000)

    Article  ADS  Google Scholar 

  36. Fa, K.S., Wang, K.G.: Generalized Klein-Kramers equation: solution and application. J. Stat. Mech. 2013(09), P09021 (2013)

    Article  MathSciNet  Google Scholar 

  37. Metzler, R.: Fractional Klein-Kramers equations: subdiffusive and superdiffusive cases. In: Recent Advances in Broadband Dielectric Spectroscopy, pp. 179–194. Springer, Berlin (2013)

  38. Metzler, R., Klafter, J.: From a generalized Chapman–Kolmogorov equation to the fractional klein- kramers equation. J. Phys. Chem. B 104(16), 3851–3857 (2000)

    Article  Google Scholar 

  39. Davies, R.W.: The connection between the Smoluchowski equation and the Kramers-Chandrasekhar equation. Phys. Rev. 93(6), 1169 (1954)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Barkai, E., Silbey, R.J.: Fractional Kramers equation. J. Phys. Chem. B 104(16), 3866–3874 (2000)

    Article  Google Scholar 

  41. Metzler, R., Sokolov, I.M.: Superdiffusive Klein-Kramers equation: normal and ano malous time evolution and Lévy walk moments. EPL (Europhys. Lett.) 58(4), 482 (2002)

    Article  ADS  Google Scholar 

  42. Murio, D.A.: Time fractional IHCP with Caputo fractional derivatives. Comput. Math. Appl. 56(9), 2371–2381 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  43. Gorenflo, R., Kilbas, A.A., Mainardi, F., Rogosin, S.V.: Mittag-Leffler Functions, Related Topics and Applications. Springer, Berlin (2014)

    Book  MATH  Google Scholar 

  44. Glöckle, W.G., Nonnenmacher, T.F.: Fractional relaxation and the time-temperature superposition principle. Rheologica Acta 33(4), 337–343 (1994)

    Article  Google Scholar 

  45. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339(1), 1–77 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Saichev, A.I., Zaslavsky, G.M.: Fractional kinetic equations: solutions and applications. Chaos 7(4), 753–764 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Srivastava, H.M., Gupta, K.C., Goyal, S.P.: The H-Functions of One and Two Variables, with Applications. South Asian Publishers, New Delhi (1982)

    MATH  Google Scholar 

  48. Artmann, S., Schlickeiser, R., Agueda, N., Krucker, S., Lin, R.P.: A diffusive description of the focused transport of solar energetic particles-intensity-and anisotropy-time profiles as a powerful diagnostic tool for interplanetary particle transport conditions. Astron. Astrophys. 535, A92 (2011)

    Article  ADS  Google Scholar 

  49. Metzler, R., Barkai, E., Klafter, J.: Anomalous diffusion and relaxation close to thermal equilibrium: a fractional fokker-planck equation approach. Phys. Rev. Lett. 82(18), 3563 (1999)

    Article  ADS  Google Scholar 

  50. Metzler, R.: Generalized Chapman-Kolmogorov equation: a unifying approach to the description of anomalous transport in external fields. Phys. Rev. E 62(5), 6233 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  51. Effenberger, F., Litvinenko, Y.E.: The diffusion approximation versus the telegraph equation for modeling solar energetic particle transport with adiabatic focusing. I. isotropic pitch-angle scattering. Astrophys. J. 783(1), 15 (2014)

    Article  ADS  Google Scholar 

  52. Effenberger, F.: Energetic particle transport with stochastic differential equations: general methods and the extension to anomalous diffusion regimes. In: 8th International Conference of Numerical Modeling of Space Plasma Flows (ASTRONUM 2013), vol. 488 (2014)

  53. Tawfik, A.M., Fichtner, H., Elhanbaly, A., Schlickeiser, R.: General solution of a fractional Parker diffusion-convection equation describing the superdiffusive transport of energetic particles. Eur. Phys. J. Plus 133(6), 209 (2018)

    Article  Google Scholar 

  54. Mathai, A.M., Saxena, R.K., Haubold, H.J.: The H-Function: Theory and Applications. Springer, New York (2009)

    MATH  Google Scholar 

  55. Qi, H., Jiang, X.: Solutions of the space-time fractional Cattaneo diffusion equation. Physica A 390(11), 1876–1883 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashraf M. Tawfik.

Appendix: Mittag–Leffler and Fox’s H-functions

Appendix: Mittag–Leffler and Fox’s H-functions

In this appendix, we present the Mittag–Leffler and Fox’s H-functions, which have been used in our calculations. The Mittag–Leffler function [43] of the first kind is the generalization of the exponential function and defined as

$$\begin{aligned} E_{\alpha }(x)=\sum \limits _{n=0}^{\infty }\frac{x^{n}}{\varGamma (\alpha n+1)}. \end{aligned}$$
(A.1)

Also, the Mittag–Leffler of the second kind [43] is defined as

$$\begin{aligned} E_{\alpha ,\beta }(x)=\sum \limits _{n=0}^{\infty }\frac{x^{n}}{\varGamma (\alpha n+\beta )}. \end{aligned}$$
(A.2)

The Fox H-function [54] is the generalized Mellin-Barnes integral in the following manner

$$\begin{aligned} H_{p,q}^{m,n}\left( x\right)&=H_{p,q}^{m,n}\left[ x\left| \begin{array} [c]{l} \,(a_{1},A_{1}),....,(a_{p},A_{p})\\ \,(b_{1},B_{1}),....,(b_{q},B_{q}) \end{array} \right. \right] \nonumber \\&=\frac{1}{2\pi i}\int \nolimits _{L}\varTheta (s)\ x^{-s}ds, \end{aligned}$$
(A.3)

where

$$\begin{aligned} \varTheta (s)=\frac{\prod \limits _{j=1}^{m}\varGamma (b_{j}+B_{j}s)\ \prod \limits _{j=1}^{n}\varGamma (1-a_{j}-A_{j}s)\ }{\prod \limits _{j=m+1}^{q} \varGamma (1-b_{j}-B_{j}s)\ \prod \limits _{j=n+1}^{p}\varGamma (a_{j}+A_{j}s)}. \end{aligned}$$
(A.4)

mnp and q are integers satisfying \(0\le n\le p,1\le m\le q\) ,\(A_{j},B_{j}\in {\mathbb {R}} ^{+}\)and \(a_{j}.b_{j}\in {\mathbb {R}} \) or \( {\mathbb {C}} .\)

The Fourier Cosine Transform of the Fox’s H-function [55] is given by

$$\begin{aligned}&\int _{0}^{\infty }\left| y\right| ^{\rho -1}H_{p,q}^{m,n}\left[ \omega \left| y\right| ^{\mu }\left| \begin{array} [c]{l} \,(a_{p},A_{p})\,\\ \,(b_{q},B_{q}) \end{array} \right. \right] \cos (yx)dy\nonumber \\&\quad =\frac{\pi }{\left| x\right| ^{\rho }}H_{q+1,p+2}^{n+1,m}\;\left[ \frac{\left| x\right| ^{\mu }}{\omega }\left| \begin{array} [c]{l} \text { }(\,1-b_{q},\text { }B_{q}),\text { }(\frac{1+\rho }{2},\frac{\mu }{2})\\ \text { }(\rho ,\mu ),(1-a_{p},A_{p}),(\frac{1+\rho }{2},\frac{\mu }{2})\text { } \end{array} \right. \right] . \end{aligned}$$
(A.5)

The derivative of the Mittag–Leffler function is a special case of the Fox’s H-function

$$\begin{aligned} E_{\alpha ,\beta }^{n}(x)=H_{1.2}^{1,1}\left[ -x\left| \begin{array} [c]{l} (-n,1)\\ (0,1)\text { }(1-(\alpha n+\beta ),\alpha ) \end{array} \right. \right] . \end{aligned}$$
(A.6)

The Fox’s H-function can be expanded as a computable series [47] in the form

$$\begin{aligned} H_{p,q}^{m,n}\left( x\right)&=\sum _{h=1}^{m}\sum _{v=0}^{\infty } \frac{\prod \limits _{j=1,j\ne h}^{m}\varGamma (b_{j}+B_{j}(b_{h}+v)/B_{h} )\ }{\prod \limits _{j=m+1}^{q}\varGamma (1-b_{j}+B_{j}(b_{h}+v)/B_{h} )\ \ }\nonumber \\&\quad \times \frac{\prod \limits _{j=1}^{n}\varGamma (1-a_{j}+A_{j}(b_{h}+v)/B_{h} )}{\prod \limits _{j=n+1}^{p}\varGamma (a_{j}-A_{j}(b_{h}+v)/B_{h})}\frac{(-1)^{v}x^{(b_{h}+v)/B_{h}}}{v!B_{h}}. \end{aligned}$$
(A.7)

which is an alternating series and thus shows slow convergence. For large argument \(\left| x \right| \rightarrow \infty \), the contour integral can be evaluated using the residue theorem and the Fox functions expanded as a series over the residues [45]

$$\begin{aligned} { H }_{ p,q }^{ m,n }(x)\sim \sum _{v=0 }^{\infty }{Res(\varTheta (s){x}^{s})}. \end{aligned}$$
(A.8)

to be taken at the points \(s=({a}_{j}-1-v)/{A}_{j}\), for \(j=1,..,n\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tawfik, A.M., Fichtner, H., Elhanbaly, A. et al. An Analytical Study of Fractional Klein–Kramers Approximations for Describing Anomalous Diffusion of Energetic Particles. J Stat Phys 174, 830–845 (2019). https://doi.org/10.1007/s10955-018-2211-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-018-2211-x

Keywords

Navigation