Skip to main content
Log in

Statistical Mechanics of Specular Reflections from Fluctuating Membranes and Interfaces

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the density of specular reflection points in the geometrical optics limit when light scatters off fluctuating interfaces and membranes in thermodynamic equilibrium. We focus on the statistical mechanics of both capillary-gravity interfaces (characterized by a surface tension) and fluid membranes (controlled by a bending rigidity) in thermodynamic equilibrium in two dimensions. Building on work by Berry et al. we show that the statistics of specular points is fully characterized by three fundamental length scales, namely, a correlation length \(\xi \), a microscopic length scale \(\ell \) and the overall size L of the interface or membrane. By combining a scaling analysis with numerical simulations, we confirm the existence of a scaling law for the density of specular reflection points, \(n_{spec}\), in two dimensions, given by \(n_{spec}\propto \ell ^{-1}\) in the limit of thin fluctuating interfaces with the interfacial thickness \(\ell \ll \xi _I\). The density of specular reflections thus diverges for fluctuating interfaces in the limit of vanishing thickness and shows no dependance on the interfacial capillary-gravity correlation length \(\xi _I\). Although fluid membranes under tension also exhibit a divergence in \(n_{spec}\propto \left( \xi _M\ell \right) ^{-1/2}\), the number of specular reflections in this case can grow by decreasing the membrane correlation length \(\xi _{M}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Drawing of caustics and light reflections in curved mirrors by Leonardo da Vinci, British library, codex Arundel 263, folio 87 v. (1508)

  2. Nye, J.F.: Natural Focusing and Fine Structure of Light, 1st edn. Institute of Physics Publishing, Bristol (1999)

    MATH  Google Scholar 

  3. Berry, M.V., Upstill, C.: IV catastrophe optics: morphologies of caustics and their diffraction patterns. Prog. Opt. 18, 257–346 (1980)

    Article  ADS  Google Scholar 

  4. Berry, M.V.: Disruption of images: the caustic-touching theorem. J. Opt. Soc. Am. A 4(3), 561–569 (1987)

    Article  ADS  Google Scholar 

  5. Longuet-Higgins, M.S.: The statistical analysis of a random, moving surface. Phil. Trans. R. Soc. A 249, 321–387 (1957)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Longuet-Higgins, M.S.: Statistical properties of an isotropic random surface. Phil. Trans. R. Soc. A 250, 157–174 (1957)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Longuet-Higgins, M.S.: The statistical distribution of the curvature of a random Gaussian surface. Proc. Camb. Phil. Soc. 54, 439–453 (1958)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Fuks, I.M., Charnotskii, M.I.: Statistics of specular points at a randomly rough surface. J. Opt. Soc. Am. A 23, 73–80 (2006)

    Article  ADS  Google Scholar 

  9. Maradudin, A.A., Michel, T.: The transverse correlation length for randomly rough surfaces. J. Stat. Phys. 58, 485–501 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Swerling, P.: Statistical properties of the contours of random surfaces. IRE Trans. Inf. Theory 8, 315–321 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  11. Simeonov, S., McGurn, A.R., Maradudin, A.A.: Transverse correlation length for randomly rough surfaces: two-dimensional roughness. Proc. SPIE 3141, 152–163 (1997)

    Article  ADS  Google Scholar 

  12. Lynch, D.K., Dearborn, D.S.P., Lock, J.A.: Glitter and glints on water. Appl. Opt. 50, 39–49 (2011)

    Article  Google Scholar 

  13. Cox, C., Munk, W.: Measurement of the roughness of the sea surface from photographs of the sun’s glitter. J. Opt. Soc. Am. 44, 838 (1954)

    Article  ADS  Google Scholar 

  14. Rice, S.O.: Mathematical Analysis of Random Noise Selected Papers on Noise and Stochastic Processes. Wax, New York (1954)

    Google Scholar 

  15. Halperin, B.I.: Statistical mechanics of topological defects. In: Balian, R., Kleman, M., Poirier, J.-P. (eds.) Les Houches Session XXV Physics of Defects. North-Holland, Amsterdam (1981)

    Google Scholar 

  16. Goodman, J.W.: Laser Speckle and Related Phenomena. In: J. C. Dainty (ed.), Springer, Berlin (1975)

  17. Weinrib, A., Halperin, B.I.: Distribution of maxima, minima, and saddle points of the intensity of laser speckle patterns. Phys. Rev. B 26, 1362 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  18. Halperin, B.I., Lax, M.: Impurity-band tails in the high-density limit. I. Minimum counting methods. Phys. Rev. 148, 722 (1966)

    Article  ADS  Google Scholar 

  19. Halperin, B.I., Lax, M.: Impurity-band tails in the high-density limit. II. Higher order corrections. Phys. Rev. 153, 802 (1967)

    Article  ADS  Google Scholar 

  20. Volovik, G.E., Mineev, V.P.: Investigation of singularities in superfluid He3 in liquid crystals by the homotopic topology methods. Zh. Eksp. Theor. Fiz. 72, 2256 (1976)

    Google Scholar 

  21. Seung, H.S., Nelson, D.R.: Defects in flexible membranes with crystalline order. Phys. Rev. A 38, 1005 (1988)

    Article  ADS  Google Scholar 

  22. Zakharov, V.E., L’vov, V.S., Falkovich, G.: Kolmogorov Spectra of Turbulence I Wave Turbulence. Springer Science and Business Media, New York (2012)

    MATH  Google Scholar 

  23. Badulin, S.I., Pushkarev, A.N., Resio, D., Zakharov, V.E.: Self-similarity of wind-driven seas. Nonlinear Process. Geophys. 12, 891 (2005)

    Article  ADS  Google Scholar 

  24. Zakharov, V.E., Guyenne, P., Pushkarev, A.N., Dias, F.: Wave turbulence in one-dimensional models. Phys. D 152, 573 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  25. Orszag, S.A.: Statistical theory of turbulence, Les Houches. In: Balian, R., Peube, J.L. (eds.) Fluid Mechanics. Gordon and Breach, New York (1973)

    Google Scholar 

  26. Frisch, U.: Turbulence: The Legacy of AN Kolmogorov. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  27. Landau, L.D., Lifshitz, E.M.: Fluid mechanics, Course of Theoretical Physics. Elsevier, Boston (1987)

    Google Scholar 

  28. Nelson, D.R.: Defects and geometry in condensed matter physics, Sec. 5.1. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  29. MacKintosh, F.C., Kas, J., Janmey, P.A.: Elasticity of semiflexible biopolymer networks. Phys. Rev. Lett. 75, 4425 (1995)

    Article  ADS  Google Scholar 

  30. Hibbs, A., Feynman, R.: Quantum Mechanics and Path Integrals. McGraw-Hill, New York (1965)

    MATH  Google Scholar 

  31. Simonsen, I., Maradudin, A.A., Leskova, T.A.: Scattering of electromagnetic waves from two-dimensional randomly rough perfectly conducting surfaces: the full angular intensity distribution. Phys. Rev. A 81, 13806 (2010)

    Article  ADS  Google Scholar 

  32. Baranova, N.B., Mamaev, N.B., Pilipetskii, A.V.: Wave-front dislocations: topological limitations for adaptive systems with phase conjugation. J. Opt. Soc. Am. A 73, 525 (1983)

    Article  ADS  Google Scholar 

  33. Freund, I.: Saddles, singularities, and extrema in random phase fields. Phys. Rev. E 52, 2348 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  34. Soskin, M.S., Gorshkov, V.N., Vasnetsov, M.V.: Topological charge and angular momentum of light beams carrying optical vortices. Phys. Rev. A 56, 4064 (1997)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

It is a pleasure to acknowledge stimulating interactions with Massimo Cencini, Daniel A. Beller and Yoav Lahini. We are grateful to Michael Berry for comments on the manuscript. This work was supported by the National Science Foundation, through Grants DMR-1608501 and via the Harvard Materials Science Research and Engineering Center via Grant DMR-1435999. We would like to dedicate this article to the memory of Pierre C. Hohenberg, whose pioneering work on dynamic critical phenomena with B.I. Halperin and others had a profound influence early in the career of one of us.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Azadi.

Appendices

Appendices

Appendix A: Correlation Function Calculation

Here we provide details of the correlation function calculations reported in section II. A for the fluctuating interfaces or membranes in \(1+1\) dimensions. From Eq. (4) we obtain,

$$\begin{aligned} C(y)=\langle f(x_{0})f(x_{0}+y)\rangle =\frac{1}{2\pi }\int ^{+\infty }_{-\infty }\frac{dq e^{iqy}}{a+b q^2+ c q^4} \end{aligned}$$
(A1)

Upon considering the complex q-plane, the denominator defines four poles at:

$$\begin{aligned} q= & {} \pm i \left[ \frac{b\mp \sqrt{\delta }}{2c}\right] ^{1/2}\nonumber \\ \delta= & {} b^{2}-4ac \end{aligned}$$
(A2)

We assume that \(\delta >0\). Upon defining an interfacial capillary-gravity correlation length by \(\xi _I\equiv \sqrt{b/a}\) and the ultraviolet cutoff induced by the c-term as \(\ell \equiv \sqrt{c/b}\), this condition simply means that \(\xi _I>2\ell \). Because all poles reside on the imaginary axis, we also have \(b>\sqrt{\delta }\). By completing the contour in the upper half plane, which encloses the poles at \(q= i \left[ \frac{b\pm \sqrt{\delta }}{2c}\right] ^{1/2}\), we find,

$$\begin{aligned}&C(y)=\frac{1}{2\pi }\int ^{+\infty }_{-\infty }\frac{dq e^{iqy}}{a+b q^2+ c q^4}\nonumber \\&\quad = i \bigg (\frac{e^{iqy}}{2bq+4cq^3}\bigg )_{q=i \left[ \frac{b+\sqrt{\delta }}{2c}\right] ^{1/2}}+ i \bigg (\frac{e^{iqy}}{2bq+4cq^3}\bigg )_{q=i \left[ \frac{b-\sqrt{\delta }}{2c}\right] ^{1/2}}\nonumber \\&\quad =\frac{1}{\sqrt{2 \delta }}\left[ \frac{e^{-\sqrt{(\frac{b-\sqrt{\delta }}{2c})}|y|}}{\sqrt{\frac{b-\sqrt{\delta }}{c}}}-\frac{e^{-\sqrt{(\frac{b+\sqrt{\delta }}{2c})}|y|}}{\sqrt{\frac{b+\sqrt{\delta }}{c}}}\right] \end{aligned}$$
(A3)

In a similar fashion we find that the second derivative of the correlation function is given by,

$$\begin{aligned} C^{(2)}(y)= & {} \frac{-1}{2\pi }\int ^{+\infty }_{-\infty }\frac{q^2 dq e^{iqy}}{a+b q^2+ c q^4}\nonumber \\= & {} \frac{1}{2\sqrt{2 \delta }}\left[ \sqrt{\frac{b-\sqrt{\delta }}{c}}e^{-\sqrt{(\frac{b-\sqrt{\delta }}{2c})}|y|}-\sqrt{\frac{b+\sqrt{\delta }}{c}}e^{-\sqrt{(\frac{b+\sqrt{\delta }}{2c})}|y|}\right] \end{aligned}$$
(A4)

Note that \(C^{(2)}(0)\) diverges as \(c\rightarrow 0\), reflecting the sensitivity of this quantity to the effective ultraviolet cutoff \(\ell =\sqrt{c/b}\) as \(\ell \rightarrow 0\).

Appendix B: Functional Integrals for the Probability Density of a Fluctuating Membrane

Here we calculate, via functional integral methods, the normalized probability of a function f(y) to have a specific value and slope at position x given by \(f(x)=g, f'(x)=g_1\). The probability density for these quantities with a fluctuating interface described by our simple quadratic free energy functional \(F_{I}\left[ f(y)\right] \), [we use the interface free energy Eq. (5) for concreteness, but identical manipulation apply for the membrane free energy Eq. (6)] is given by,

$$\begin{aligned}&p\left[ f(x)=g,f'(x)=g_1;x\right] \nonumber \\&\quad =\frac{\int \mathcal {D}f(y)\delta \left[ f(x)-g\right] \delta \left[ f'(x)-g_1\right] e^{-F_I\left[ f(y)\right] }}{\int \mathcal {D}f(y) e^{-F_I\left[ f(y)\right] }}\nonumber \\&\quad =\frac{\int \mathcal {D}f(y)\delta \left[ f(x)-g\right] \delta \left[ f'(x)-g_1\right] e^{\frac{-1}{2}\int dy\left[ a f(y)^{2}+b\left( \frac{df(y)}{dy}\right) ^{2}\right] }}{\int \mathcal {D}f(y) e^{-F_I\left[ f(y)\right] }}\nonumber \\&\quad =\int ds\int dt e^{-2\pi i sg}e^{-2\pi i t g_1}\langle e^{2\pi i s f(x)+2\pi i t f'(x) }\rangle \nonumber \\&\quad = \int ds\int dt e^{-2\pi i sg}e^{-2\pi i t g_1}e^{-2\pi ^2 \langle f^2(x)\rangle s^2 -2\pi ^2 \langle f'^2(x)\rangle t^2-4\pi ^2 \langle f(x) f'(x)\rangle st }\nonumber \\&\quad =\int ds\int dt e^{-2\pi i sg}e^{-2\pi i t g_1}e^{-2\pi ^2 C(0) s^2+2\pi ^2 C^{(2)}(0) t^2 } \end{aligned}$$
(B1)

where \(\langle .\rangle \) represents a thermal average, and \(\left\langle f(x)f'(x)\right\rangle =\frac{1}{2}\left\langle \frac{d}{dx}f^{2}(x)\right\rangle =0\) with our periodic boundary conditions. We also have \(C(0)=\langle f^{2}(x)\rangle \) and \(C^{(2)}(x)=-\left\langle \left( \frac{df}{dx}\right) ^{2}\right\rangle \). Here we used the identity, valid for any Gaussian probability distribution, \(\langle e^{h(x)}\rangle =e^{\frac{1}{2}\langle {h^{2}(x)}\rangle }\) and the integral representation of the delta function,

$$\begin{aligned} \delta \left[ f(x)-g\right] =\int ^{\infty }_{-\infty } ds e^{2\pi i \left[ f(x)-g\right] s} . \end{aligned}$$
(B2)

This probability density for a fluctuating membrane is normalized by construction, \(\int ^{\infty }_{-\infty } p\left[ g,g_1\right] dg_1,dg_2=1\). By the aid of standard Gaussian integrals we find from Eq. (B1) the probability density, \(p\left[ f(x)=g, f'(x)=g_1;x\right] \) is in fact independent of x,

$$\begin{aligned} p\left[ f(x)=g,f'(x)=g_1;x\right] =\frac{1}{2\pi \left[ -C(0)C^{(2)}(0)\right] ^{1/2}}\exp \left[ -\frac{g^{2}}{2C(0)}+\frac{g^{2}_{1}}{2C^{(2)}(0)}\right] .\nonumber \\ \end{aligned}$$
(B3)

Similarly, one can calculate the normalized probability of a function f(y) to have a given slope and curvature described by \(f'=g_1, f''=g_2\) at the position x,

$$\begin{aligned} p\left[ f'(x)=g_1,f(x)''=g_2;x\right]= & {} \frac{\int \mathcal {D}f(y)\delta \left[ f'(x)-g_1\right] \delta \left[ f''(x)-g_2\right] e^{-F\left[ f(y)\right] }}{\int \mathcal {D}f(y) e^{-F\left[ f(y)\right] }}\nonumber \\= & {} \int ds\int dt e^{-2\pi i sg_1}e^{-2\pi i t g_2}\langle e^{2\pi i s f'(x)+2\pi i t f''(x) }\rangle \nonumber \\= & {} \int ds\int dt e^{-2\pi i sg_1}e^{-2\pi i t g_2}e^{2\pi ^2 C^{(2)}(0) s^2-2\pi ^2 C^{(4)}(0) t^2 }\nonumber \\= & {} \frac{1}{2\pi \left[ -C^{(2)}(0)C^{(4)}(0)\right] ^{1/2}}\exp \left[ \frac{g_1^{2}}{2C^{(2)}(0)}-\frac{g_2^{2}}{2C^{(4)}(0)}\right] \nonumber \\ \end{aligned}$$
(B4)

where \(C^{(4)}(0)=\lim _{y\rightarrow 0}\left\langle f''(x+y)f''(x)\right\rangle =\left\langle \left( \frac{d^2 f}{dx^2}\right) ^2\right\rangle \). In a similar fashion, we can find the probability density of a stochastic function with fixed higher order derivatives, at position x, with \(\frac{d^n f(x)}{dx^n}=g_n\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azadi, A., Nelson, D.R. Statistical Mechanics of Specular Reflections from Fluctuating Membranes and Interfaces. J Stat Phys 175, 578–597 (2019). https://doi.org/10.1007/s10955-018-2203-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-018-2203-x

Keywords

Navigation