Skip to main content
Log in

Global Existence and Decay Rates of the Solutions Near Maxwellian for Non-linear Fokker–Planck Equations

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In this paper, we study the global existence and decay rates of the solutions near Maxwellian for non-linear Fokker–Planck equations in the whole space. The global existence is proved by combining uniform-in-time energy estimates with local solution constructed by Picard type iteration sequence. The decay rates of the nonlinear model is obtained by using the precise spectral analysis of the linearized Fokker–Planck operator as well as the energy method. The nonlinearity in the model brings new difficulty to the energy estimates, which is resolved by additional tailored weighted-in-v energy estimates suitable for Fokker–Planck operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bouchut, F.: Hypoelliptic regularity in kinetic equations. J. Math. Pures Appl. 81, 1135–1159 (2002)

    Article  MathSciNet  Google Scholar 

  2. Carrillo, J.A., Toscani, G.: Exponential convergence toward equilibrium for homogeneous Fokker–Planck-type equations. Math. Methods Appl. Sci. 21, 1269–1286 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  3. Carrillo, J.A., Duan, R., Moussa, A.: Global classical solutions close to equilibrium to the Vlasov–Fokker–Planck–Euler system. Kinet. Relat. Mod. 4, 227–258 (2011)

    Article  MathSciNet  Google Scholar 

  4. Chacón-Acosta, G., Kremer, G.M.: Fokker–Planck-type equations for a simple gas and for a semirelativistic Brownian motion from a relativistic kinetic theory. Phys. Rev. E 76, 021201 (2007)

    Article  ADS  Google Scholar 

  5. Chandrasekhar, S.: Stochastic problems in physics and astronomy. Rev. Mod. Phys. 15, 1–89 (1943)

    Article  ADS  MathSciNet  Google Scholar 

  6. Desvillettes, L., Villani, C.: On the trend to global equilibrium in spatially inhomogeneous entropy-dissipating systems: The linear Fokker–Planck equation. Commun. Pur. Appl. Math. 54, 1–42 (2001)

    Article  MathSciNet  Google Scholar 

  7. DiPerna, R.J., Lions, P.-L.: On the Fokker–Planck–Boltzmann equation. Commun. Math. Phys. 120, 1–23 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  8. Félix, J.A.A., Calogero, S.: On a relativistic Fokker–Planck equation in kinetic theory. Kinet. Relat. Mod. 4, 401–426 (2017)

    MathSciNet  Google Scholar 

  9. Frank, T.D.: Nonlinear Fokker–Planck equations: fundamentals and applications. Springer, New York (2005)

    MATH  Google Scholar 

  10. Galkin, V.S., Rusakov, S.V.: Kinetic Fokker–Planck equation for free-molecular, thermally nonequilibrium Brownian particles in an inhomogeneous gas. Fluid Dyn. 42, 330–334 (2007)

    Article  ADS  Google Scholar 

  11. Golse, F., Vasseur, A. F.: Hölder regularity for hypoelliptic kinetic equations with rough diffusion coefficients (2015). Version 2, arXiv:1506.01908

  12. Golse, F., Imbert, C., Mouhot, C., Vasseur, A.: Harnack inequality for kinetic Fokker–Planck equations with rough coefficients and application to the Landau equation (2016). arXiv:1607.08068

  13. Goudon, T., He, L., Moussa, A., Zhang, P.: The Navier–Stokes–Vlasov–Fokker–Planck system near equilibrium. SIAM J. Math. Anal. 42, 2177–2202 (2009)

    Article  MathSciNet  Google Scholar 

  14. Hörmander, L.: Hypoelliptic second order differential equations. Acta Math. 119, 147–171 (1967)

    Article  MathSciNet  Google Scholar 

  15. Hwang, H.J., Jang, J.: On the Vlasov–Poisson–Fokker–Planck equation near Maxwellian. Discret. Cont. Dyn. B 18, 681–691 (2013)

    Article  MathSciNet  Google Scholar 

  16. Imbert, C., Mouhot, C.: Hölder continuity of solutions to hypoelliptic equations with bounded measurable coefficients. Technical report (2015). Version 5, arXiv:1505.04608

  17. Li, H., Matsumura, A.: Behaviour of the Fokker–Planck–Boltzmann equation near a Maxwellian. Arch. Ration. Mech. Anal. 189, 1–44 (2008)

    Article  MathSciNet  Google Scholar 

  18. Li, F., Mu, Y., Wang, D.: Strong solutions to the compressible Navier–Stokes–Vlasov–Fokker–Planck equations: global existence near the equilibrium and large time behavior. SIAM J. Math. Anal. 49, 984–1026 (2017)

    Article  MathSciNet  Google Scholar 

  19. Luo, L., Yu, H.: Spectrum analysis of the linear Fokker–Planck equation. Anal. Appl. 15, 313–331 (2017)

    Article  MathSciNet  Google Scholar 

  20. Luo, L., Zhang, X.: Global classical solutions for quantum kinetic Fokker–Planck equations. Acta Math. Sci. 35B, 140–156 (2015)

    Article  MathSciNet  Google Scholar 

  21. Markowich, P.A., Villani, C.: On the trend to equilibrium for the Fokker–Planck equation: an interplay between physics and functional analysis. Mat. Contemp. 19, 1–29 (2000)

    MathSciNet  MATH  Google Scholar 

  22. Mellet, A., Vasseur, A.: Asymptotic analysis for a Vlasov–Fokker–Planck/compressible Navier–Stokes system of equations. Commun. Math. Phys. 281, 573–596 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  23. Montgomery, D.: Brownian motion from Boltzmann’s equation. Phys. Fluids 14, 2088–2090 (1971)

    Article  ADS  Google Scholar 

  24. Perthame, B.: Higher moments for kinetic equations: the Vlasov–Poisson and Fokker–Planck cases. Math. Methods Appl. Sci. 13, 441–452 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  25. Taylor, M.E.: Partial differential equations, III. Nonlinear equations (Applied Mathematical Sciences, Vol. 117), 2nd edn. Springer, New York (2011)

    Google Scholar 

  26. Villani, C.: A review of mathematical topics in collisional kinetic theory. In: Friedlander, S., Serre, D. (eds.) Handbook of Mathematical Fluid Dynamics, vol. I, pp. 71–305. North-Holland, Amsterdam (2002)

    Chapter  Google Scholar 

  27. Villani, C.: Hypocoercivity. Mem. Am. Math. Soc. 202, 950 (2009)

    MathSciNet  MATH  Google Scholar 

  28. Yang, T., Yu, H.: Global classical solutions for the Vlasov–Maxwell–Fokker–Planck system. SIAM J. Math. Anal. 42, 459–488 (2010)

    Article  MathSciNet  Google Scholar 

  29. Yano, R.: On Quantum Fokker–Planck Equation. J. Stat. Phys. 158, 1–17 (2015)

    Article  MathSciNet  Google Scholar 

  30. Zhong, M., Li, H.: Long time behavior of the Fokker–Planck–Boltzmann equation. Acta Math. Appl. Sin. E 30, 533–554 (2014)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

J. Liao would like thank Professor R. Alexandre for many valuable discussions on the model. This research is partially supported by Fundamental Research Funds for the Central Universities. X.F. Yang is supported by National Science Fund of China under the Grant 11171212 and the SJTU’s SMC Projection. The detailed suggestions from the anonymous referees are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiongfeng Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, J., Wang, Q. & Yang, X. Global Existence and Decay Rates of the Solutions Near Maxwellian for Non-linear Fokker–Planck Equations. J Stat Phys 173, 222–241 (2018). https://doi.org/10.1007/s10955-018-2129-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-018-2129-3

Keywords

Mathematics Subject Classification

Navigation