Skip to main content
Log in

Coexistence of Stable Limit Cycles in a Generalized Curie–Weiss Model with Dissipation

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In this paper, we modify the Langevin dynamics associated to the generalized Curie–Weiss model by introducing noisy and dissipative evolution in the interaction potential. We show that, when a zero-mean Gaussian is taken as single-site distribution, the dynamics in the thermodynamic limit can be described by a finite set of ODEs. Depending on the form of the interaction function, the system can have several phase transitions at different critical temperatures. Because of the dissipation effect, not only the magnetization of the systems displays a self-sustained periodic behavior at sufficiently low temperature, but, in certain regimes, any (finite) number of stable limit cycles can exist. We explore some of these peculiarities with explicit examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Acebrón, J.A., Bonilla, L.L., Vicente, C.J.P., Ritort, F., Spigler, R.: The Kuramoto model: a simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77(1), 137 (2005)

    Article  ADS  Google Scholar 

  2. Bertini, L., Giacomin, G., Pakdaman, K.: Dynamical aspects of mean field plane rotators and the Kuramoto model. J. Stat. Phys. 138(1–3), 270–290 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  3. Carletti, T., Villari, G.: A note on existence and uniqueness of limit cycles for Liénard systems. J. Math. Anal. Appl. 307(2), 763–773 (2005)

    Article  MathSciNet  Google Scholar 

  4. Chen, W.-C.: Nonlinear dynamics and chaos in a fractional-order financial system. Chaos Solitons Fractals 36(5), 1305–1314 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  5. Chen, X., Llibre, J., Zhang, Z.: Sufficient conditions for the existence of at least \(n\) or exactly \(n\) limit cycles for the Liénard differential systems. J. Differ. Equ. 242, 11–23 (2007)

    Article  ADS  Google Scholar 

  6. Collet, F., Dai Pra, P.: The role of disorder in the dynamics of critical fluctuations of mean field models. Electron. J. Probab 17(26), 1–40 (2012)

    MathSciNet  MATH  Google Scholar 

  7. Collet, F., Dai Pra, P., Formentin, M.: Collective periodicity in mean-field models of cooperative behavior. Nonlinear Differ. Equ. Appl. NoDEA 22(5), 1461–1482 (2015)

    Article  MathSciNet  Google Scholar 

  8. Collet, F., Formentin, M., Tovazzi, D.: Rhythmic behavior in a two-population mean-field Ising model. Phys. Rev. E 94(4), 042139 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  9. Dai Pra, P., Fischer, M., Regoli, D., Regoli, D.: A Curie-Weiss model with dissipation. J. Stat. Phys. 152(1), 37–53 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  10. Dai Pra, P., Giacomin, G., Regoli, D.: Noise-induced periodicity: some stochastic models for complex biological systems. In: Mathematical Models and Methods for Planet Earth, pp. 25–35. Springer, Berlin (2014)

    Chapter  Google Scholar 

  11. Dawson, D.A.: Critical dynamics and fluctuations for a mean-field model of cooperative behavior. J. Stat. Phys. 31(1), 29–85 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  12. Ditlevsen, S., Löcherbach, E.: Multi-class oscillating systems of interacting neurons. Stoch. Process. Appl. 127, 1840–1869 (2016)

    Article  MathSciNet  Google Scholar 

  13. Eisele, T., Ellis, R.S.: Multiple phase transitions in the generalized Curie-Weiss model. J. Stat. Phys. 52(1–2), 161–202 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  14. Ellis, R.S., Newman, C.M.: Limit theorems for sums of dependent random variables occurring in statistical mechanics. Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete 44(2), 117–139 (1978)

    Article  MathSciNet  Google Scholar 

  15. Ermentrout, G.B., Terman, D.H.: Mathematical Foundations of Neuroscience, vol. 35. Springer, Berlin (2010)

    MATH  Google Scholar 

  16. Giacomin, G., Poquet, C.: Noise, interaction, nonlinear dynamics and the origin of rhythmic behaviors. Braz. J. Probab. Stat. 29(2), 460–493 (2015)

    Article  MathSciNet  Google Scholar 

  17. Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes. Elsevier, New York (2014)

    MATH  Google Scholar 

  18. Lindner, B., Garcıa-Ojalvo, J., Neiman, A., Schimansky-Geier, L.: Effects of noise in excitable systems. Phys. Rep. 392(6), 321–424 (2004)

    Article  ADS  Google Scholar 

  19. Odani, K.: Existence of exactly \(N\) periodic solutions for Liénard systems. Funkcialaj Ekvacioj 39, 217–234 (1996)

    MathSciNet  MATH  Google Scholar 

  20. Scheutzow, M.: Noise can create periodic behavior and stabilize nonlinear diffusions. Stoch. Process. Appl. 20(2), 323–331 (1985)

    Article  MathSciNet  Google Scholar 

  21. Sznitman, A.-S.: Topics in propagation of chaos. In: Ecole d’Eté de Probabilités de Saint-Flour XIX—1989, pp. 165–251. Springer, Berlin (1991)

    Google Scholar 

  22. Touboul, J.: The hipster effect: when anticonformists all look the same. arXiv preprint arXiv:1410.8001 (2014)

  23. Touboul, J., Hermann, G., Faugeras, O.: Noise-induced behaviors in neural mean field dynamics. SIAM J. Appl. Dyn. Syst. 11(1), 49–81 (2012)

    Article  MathSciNet  Google Scholar 

  24. Turchin, P., Taylor, A.D.: Complex dynamics in ecological time series. Ecology 73(1), 289–305 (1992)

    Article  Google Scholar 

  25. Weidlich, W., Haag, G.: Concepts and Models of a Quantitative Sociology: The Dynamics of Interacting Populations, vol. 14. Springer, Berlin (2012)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Paolo Dai Pra for having suggested the idea of this work and for all the useful discussions on it and Marco Formentin for the suggestions and comments. This work was partially supported by the INdAM-GNAMPA Project 2017 “Collective periodic behavior in interacting particle systems”. L. A. acknowledges the partial support by Centro Studi Levi Cases (Università di Padova).

Funding

Funding were provided by Università degli Studi di Padova and Weierstrass Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luisa Andreis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreis, L., Tovazzi, D. Coexistence of Stable Limit Cycles in a Generalized Curie–Weiss Model with Dissipation. J Stat Phys 173, 163–181 (2018). https://doi.org/10.1007/s10955-018-2127-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-018-2127-5

Keywords

Navigation