Skip to main content
Log in

Death and Resurrection of a Current by Disorder, Interaction or Periodic Driving

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We present several models of biased transport on (random) comb-like structures and on percolating backbones, that allow full mathematical control. We show how power-law corrections in the distribution of trap sizes may lead to a discontinuity in the current-field characteristic: the current jumps to zero when the driving exceeds a threshold. The current may resurrect when the field is modulated in time, also discontinuously: a little shaking enables the current to jump up. Finally, exclusion between particles postpones or even prevents the current from dying, while attraction such as modeled in zero range processes may expedite it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Krug, J.: Boundary-induced phase transitions in driven diffusive systems. Phys. Rev. Lett. 67, 1882 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  2. Lazarescu, A.: Generic dynamical phase transition in one-dimensional bulk-driven lattice gases with exclusion. J. Phys. A 50, 254004 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  3. Baek, Y., Kafri, Y., Lecomte, V.: Dynamical phase transitions in the current distribution of driven diffusive channels. J. Phys. A 1, 105001 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  4. Garrahan, J.P., Jack, R.L., Lecomte, V., Pitard, E., van Duijvendijk, K., van Wijland, F.: First-order dynamical phase transition in models of glasses: an approach based on ensembles of histories. J. Phys. A 42, 075007 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  5. Garrahan, J.P., Sollich, P., Toninelli, C.: Kinetically Constrained Models. In: Berthier, L., Biroli, G., Bouchaud, J-P., Cipelletti, L., van Saarloos, W. (eds.) pp. 341–369. Oxford University Press (2011). arXiv:1009.6113

  6. Jack, R., Garrahan, J.P., Chandler, D.: Space-time thermodynamics and subsystem observables in kinetically constrained models of glassy materials. J. Chem. Phys. 125, 184509 (2006)

    Article  ADS  Google Scholar 

  7. Everest, B., Lesanovsky, I., Garrahan, J.P., Levi, E.: Role of interactions in a dissipative many-body localized system. Phys. Rev. B 95, 024310 (2017)

    Article  ADS  Google Scholar 

  8. Ramaswamy, R., Barma, M.: Transport in random networks in a field: interacting particles. J. Phys. A 20, 2973–2987 (1987)

    Article  ADS  Google Scholar 

  9. Zeitouni, O.: Random walks in random environments. In: Proceedings of the ICM, Beijing 2002, vol. 3, pp. 117–130 (2003)

  10. Sznitman, A.-S.: Brownian Motion, Obstacles and Random Media. Springer, Berlin (1998)

    Book  Google Scholar 

  11. Hughes, B.D.: Random Walks and Random Environments. Oxford University Press, Oxford (1995). Volume 2: Random Environments

    MATH  Google Scholar 

  12. Mèndez, V., Iomin, A.: Comb-like models for transport along spiny dendrites. Chaos, Solitons Fractals 53, 46–51 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  13. Chowdhury, D.: Random walk on self-avoiding walk in external bias: diffusion, drift and trapping. J. Phys. A 18, L761–L766 (1985)

    Article  ADS  Google Scholar 

  14. Derrida, B.: Velocity and diffusion constant of a periodic one-dimensional hopping model. J. Stat. Phys. 31, 433–450 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  15. White, S.R., Barma, M.: Field-induced drift and trapping in percolation networks. J. Phys. A 17, 2995–3008 (1984)

    Article  ADS  Google Scholar 

  16. Bunde, A., Havlin, S., Stanley, H.E., Trus, B., Weiss, G.H.: Diffusion in random structures with a topological bias. Phys. Rev. B 34, 8129–8132 (1986)

    Article  ADS  Google Scholar 

  17. Balakrishnan, V., Van den Broeck, C.: Transport properties on a random comb. Phys. A 217, 1–21 (1995)

    Article  MathSciNet  Google Scholar 

  18. Barma, M., Dhar, D.: Directed diffusion in a percolation network. J. Phys. C 16, 1451–1458 (1983)

    Article  ADS  Google Scholar 

  19. Pandey, R.B.: Classical diffusion, drift, and trapping in random percolating systems. Phys. Rev. B 30, 489–491 (1984)

    Article  ADS  Google Scholar 

  20. Leitmann, S., Franosch, T.: Nonlinear response in the driven lattice Lorentz gas. Phys. Rev. Lett. 111, 190603 (2013)

    Article  ADS  Google Scholar 

  21. Slapik, A., Luczka, J., Spiechowicz, J.: Negative mobility of a Brownian particle: strong damping regime. Commun. Nonlinear Sci. Numer. Simulat. 5, 316–325 (2018)

    Article  ADS  Google Scholar 

  22. Bénichou, O., Illien, P., Oshanin, G., Sarracino, A., Voituriez, R.: Microscopic theory for negative differential mobility in crowded environments. Phys. Rev. Lett. 113, 268002 (2014)

    Article  ADS  Google Scholar 

  23. Baerts, P., Basu, U., Maes, C., Safaverdi, S.: The frenetic origin of negative differential response. Phys. Rev. E 88, 052109 (2013)

    Article  ADS  Google Scholar 

  24. Basu, U., Maes, C.: Nonequilibrium response and frenesy. J. Phys. 638, 012001 (2015)

    Google Scholar 

  25. Zia, R.K.P., Præstgaard, E.L., Mouritsen, O.G.: Getting more from pushing less: negative specific heat and conductivity in nonequilibrium steady states. Am. J. Phys. 70, 384 (2002)

    Article  ADS  Google Scholar 

  26. Solomon, F.: Random walks in a random environment. Ann. Prob. 3, 1–31 (1975)

    Article  MathSciNet  Google Scholar 

  27. Larkin, A.: Vliyanie neodnorodnostei na strukturu smeshannogo sostoyaniya. Sov. Phys. JETP 31, 784 (1970)

    ADS  Google Scholar 

  28. Leschhorn, H., Tang, L.-H.: Avalanches and correlations in driven interface depinning. Phys. Rev. E 49, 1238–1245 (1994)

    Article  ADS  Google Scholar 

  29. Thiery, T.: Analytical methods and field theory for disordered systems. Ph.D. Thesis at the Laboratoire de Physique Thèorique de lEcole Normale Supèrieure (2016)

  30. Sutherland, W.: The measurement of large molecular masses. Report of the 10th Meeting of the Australasian Association for the Advancement of Science, Dunedin, pp 117–121 (1904)

  31. Sutherland, W.: A dynamical theory for non-electrolytes and the molecular mass of albumin. Lond. Edinb. Dublin Philos. Mag. J. Sci. 6, 781–785 (1905)

    Article  Google Scholar 

  32. Ben-Naim, E., Krapivsky, P.L.: Strong mobility in weakly disordered systems. Phys. Rev. Lett. 102, 190602 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  33. Campanino, M., Gianfelice, M.: On the Ornstein–Zernike behaviour for the Bernoulli bond percolation on \(\mathbb{Z}^d\), \(d\ge 3\), in the supercritical regime. J. Stat. Phys. 145, 1407–1422 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  34. Oksendal, B.K.: Stochastic Differential Equations: An Introduction with Applications. Springer, Berlin (2003)

    Book  Google Scholar 

  35. Redner, S.: A Guide to First-Passage Processes. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  36. Maes, C.: Non-dissipative Effects in Nonequilibrium Systems. SpringerBriefs in Complexity (2018)

    Book  Google Scholar 

  37. Demaerel, T., Maes, C.: Activity induced first order transition for the current in a disordered medium. Condens. Matter Phys. 20(3), 33002 (2017)

    Article  Google Scholar 

  38. Bouchaud, J.-P.: Weak ergodicity breaking and aging in disordered systems. J. Phys. I 2, 1705–1713 (1992)

    Google Scholar 

  39. Henkel, M., Pleimling, M.: Non-equilibrium Phase Transitions Volume 2: Ageing and Dynamical Scaling Far from Equilibrium. Springer, Heidelberg (2010)

    Book  Google Scholar 

  40. Ness, C., Mari, R., Cates, M.E.: Shaken and stirred: random organization reduces viscosity and dissipation in granular suspensions. Sci. Adv. 4(3), eaar3296 (2018)

    Article  ADS  Google Scholar 

  41. Evans, M.R., Hanney, T.: Nonequilibrium statistical mechanics of the zero-range process and related models. J. Phys. A 38, R195–R239 (2005)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thibaut Demaerel.

Appendices

Appendix A: Derivation of the First-Hitting Time Formula

In this section we derive the expression (7) for the expected time for a diffusion X(t) with \(X(0)=x_j \in \mathbb {R}\) and evolving according to

$$\begin{aligned} \dot{X}_t=-V^{\prime }(X_t)+\sqrt{2}\,\xi _t \end{aligned}$$
(A1)

to first hit a given point \(x_{j+1}>x_j\). Here, we replace the notation \(x_j\) by \(x\in \mathbb {R}\) and \(x_{j+1}\) by \(y\in \mathbb {R}\).

One proceeds by using Dynkin’s formula; for a smooth function f,

$$\begin{aligned} \mathbb {E}^x[f(X_{\tau })]=f(x)+\mathbb {E}^x\left[ \int _0^\tau (Lf)(X_s)\text {d}s\right] \end{aligned}$$
(A2)

wherein

  • \(\mathbb {E}^x\) is the expectation value conditioned on the initial condition \(X(0)=x\);

  • \(\tau \) is the (random) first exit time from some open bounded interval surrounding x. We denote it \(I_a=(a,y)\subset \mathbb {R}\) and keep in mind to let \(a \rightarrow -\infty \) when we are ready;

  • L is the backward generator associated to the Markov process (A1):

    $$\begin{aligned} (Lg)(.)=-V^{\prime }(.)g^{\prime }(.)+g^{\prime \prime }(.)=e^{V(.)}\left( e^{-V(.)}g^{\prime }(.)\right) ^{\prime } \end{aligned}$$

The first way we want to use Dynkin’s formula is by defining the function f as the solution to the following Dirichlet boundary value problem:

$$\begin{aligned} {\left\{ \begin{array}{ll} (Lf)(x)\equiv -1 \\ f(a)=f(y)=0 \end{array}\right. } \end{aligned}$$

Note that for such function f the Dynkin formula (A2) reduces to

$$\begin{aligned} 0=f(x)+\mathbb {E}^x\left[ \int _0^\tau (-1)\text {d}s\right] =f(x)-\mathbb {E}^x[\tau ] \end{aligned}$$

So \(f(x)=\mathbb {E}^x[\tau ]\) is the expected escape time required to leave the interval [ay].

The (unique) solution to this problem is given by

$$\begin{aligned}&f_{(a)}(x)=\left( -C_a\int _x^b \text {d}y \,e^{V(y)-V(b)}+\int _x^b \text {d}y\int _{a}^{y} \text {d}z \,e^{V(y)-V(z)}\right) ,\nonumber \\&\quad C_a = \frac{\int _a^b \text {d}y\int _{a}^{y} \text {d}z \,e^{V(y)-V(z)}}{\int _a^b \text {d}y \,e^{V(y)-V(b)}} \end{aligned}$$
(A3)

The escape time increases if we lower a as can be verified from the expression (A3). In any case, once the probability that the diffusion diverges to \(-\infty \) before hitting y is proven to be zero, we then know that the true average escape time \(\langle t_{x \rightarrow y}\rangle \) from the interval \((-\infty ,y)\) is given by

$$\begin{aligned} \langle t_{x \rightarrow y}\rangle =\lim _{a \rightarrow -\infty }f_{(a)}(x)=\inf _{a<x}f_{(a)}(x) \end{aligned}$$

Letting \(a \rightarrow -\infty \) in the expression (A3) yields \(C_a \rightarrow 0\) provided

$$\begin{aligned} \exists C_1 >0,\,C_2 \in \mathbb {R}:\,\forall z \le y \le b:\, V(y)-V(z)\le - C_1 (y-z)+C_2. \end{aligned}$$
(A4)

which is the case with probability 1 in our setup, by the strong law of large numbers. Hence (A3) reduces to (7).

To finally show that the scenario of a divergence of the diffusion to \(-\infty \) before hitting y has zero probability, we want to apply the Dynkin formula to the function \(\tilde{f}\) defined through the boundary value problem

$$\begin{aligned} {\left\{ \begin{array}{ll} (L\tilde{f})(x)\equiv 0 \\ \tilde{f}(a)=1,\,\tilde{f}(y)=0 \end{array}\right. } \end{aligned}$$
(A5)

Inserting this into the Dynkin formula (A2) yields

$$\begin{aligned} \mathbb {E}^x(\tilde{f}(X_\tau ))=\tilde{f}(x) \end{aligned}$$

wherein the left-hand side expresses the probability that the diffusion will hit \(x=a\) before hitting \(x=y\). The (unique) solution to (A5) is given by

$$\begin{aligned} \tilde{f}_{(a)}(x)=\frac{\int _x^b \text {d}y \,e^{V(y)-V(b)}}{\int _a^b \text {d}z\,e^{V(z)-V(b)}}\underset{(A4)}{\le } \frac{\int _x^b \text {d}y \,e^{V(y)-V(b)}}{C_1^{-1}(1+e^{C_1(b-a)})e^{C_2}} \rightarrow 0 \end{aligned}$$

as \(a \rightarrow -\infty \). This implies the requested result.

Appendix B: Waiting Times on a Random Comb

Here we give details for better understanding of the equalities (12):

$$\begin{aligned} v= & {} \frac{1}{\mathbb {E}[\Delta t_0]}=\frac{\tanh ( E_1/2)}{\mathbb {E}[t_0^r]}=\frac{\tanh ( E_1/2)}{\sum _{j=0}^{\infty } \text {Prob}[L_0=j]\frac{e^{ (j+1) E_2}-1}{e^{ E_2}-1}}2\cosh ( E_1/2)\\= & {} 2\sinh ( E_1/2)\frac{e^{ E_2}-1}{ e^{ E_2}\langle e^{ L_0 E_2}\rangle -1}\nonumber \end{aligned}$$
(B1)

where \(\mathbb {E}[\Delta t_0]\) is the average time required for the walker to reach the site (1, 0) for the first time when it starts at the site (0, 0). Likewise, \(\mathbb {E}[t_0^r]\) is the average time required for the walker to reach either \((-1,0)\) or (1, 0) given that it started at (0, 0). A derivation of the first two equalities was already given in the body of the text. For the third equality, consider that

$$\begin{aligned} \mathbb {E}[t_0^r\left. \right| L_0=0]=\frac{1}{e^{ E_1/2}+e^{- E_1/2}} \end{aligned}$$

and for \(n\in \mathbb {N}_0\),

$$\begin{aligned}&\mathbb {E}[t_0^r\left. \right| L_0=n ]\\&\quad =\sum _{j=0}^{\infty }\left( (j+1)t_0+j\tau _n\right) \text {Prob[ The walker makes }j\text { successive sorties from site }(0,0) \\&\qquad \text {into the dead-end }\{(0,j)\}_{1\le j \le n}\text { before finally jumping to }(\pm 1,0) ] \\&\quad =\sum _{j=0}^\infty \left( (j+1)t_0+j\tau _n\right) (1-p)^jp=\frac{1}{p}t_0+\frac{1-p}{p}\tau _n \end{aligned}$$

wherein

  •  \(p=\text {Prob}[\text {A random walk initialized at }(0,0)\text { hits } (\pm 1,0)\text { before hitting }(0,1)]\);

  •  \(t_0=\mathbb {E}[\text {Amount of time a walker initialized at } (0,0)\text { remains on site }(0,0)]\);

  •  \(\tau _n=\mathbb {E}[\text {time required for a random walk initialized at site }(0,1) \text { to hit }(0,0)]\).

One easily sees that \(p=\frac{e^{ E_1/2}+e^{- E_1/2}}{e^{ E_1/2}+e^{- E_1/2}+e^{ E_2/2}}\) and \(t_0=\frac{1}{e^{ E_1/2}+e^{- E_1/2}+e^{ E_2/2}}\).

$$\begin{aligned}= & {} \frac{e^{ E_1/2}+e^{- E_1/2}+e^{ E_2/2}}{e^{ E_1/2}+e^{- E_1/2}}\frac{1}{e^{ E_1/2}+e^{- E_1/2}+e^{ E_2/2}}+\frac{e^{ E_2/2}}{e^{ E_1/2}+e^{- E_1/2}}\tau _n \nonumber \\= & {} \frac{1}{2\cosh ( E_1/2)}\left( 1+e^{ E_2/2}\tau _n\right) \end{aligned}$$
(B2)

The \(\tau _n\) can be computed by induction: clearly, \(\tau _1=e^{ E_2/2}\) (that is simply the Poisson waiting time to jump back from (0, 1) to (0, 0)). We can compute \(\tau _{n+1}\) from \(\tau _n\) via the following consideration. In a dead-end with length \(n+1>2\) a walker initialized at (0, 1) (i.e., the neck of the dead-end) will remain stuck on that site with an average waiting time \(\frac{1}{e^{ E_2/2}+e^{- E_2/2}}\). After waiting till the first jump, the probability to jump to (0, 0) is \(\frac{e^{- E_2/2}}{e^{ E_2/2}+e^{- E_2/2}}\) while the probability to jump deeper into the dead-end (i.e., into \(\{(0,j)\}_{2\le j \le n+1}\)) is \(\frac{e^{E_2/2}}{e^{ E_2/2}+e^{- E_2/2}}\). In the latter case, the time required to return from \(\{(0,j)\}_{2\le j \le n+1}\) to (0, 1) is \(\tau _n\). Hence,

$$\begin{aligned}&\tau _{n+1}\\&\quad =\sum _{j=0}^{\infty }\left( (j+1)t_0^{\prime }+j\tau _n\right) \text {Prob[ The walker makes }j\text { successive sorties from site }(0,1) \\&\qquad \text {into the dead-end }\{(0,j)\}_{2\le j \le n+1}\text { before finally jumping to }(0,0) ] \\&\quad =\sum _{j=0}^\infty \left( (j+1)t_0^{\prime }+j\tau _n\right) (1-q)^jq=\frac{1}{q}t_0^{\prime }+\frac{1-q}{q}\tau _n \end{aligned}$$

wherein

  • \(q=\text {Prob}[\text {A random walk initialized at }(0,1)\text { hits } (0,0)\text { before hitting }(0,2)]\);

  • \(t_0^{\prime }=\mathbb {E}[\text {Amount of time a walker initialized at } (0,1)\text { remains on site }(0,1)]\).

Since \(q=\frac{e^{- E_2/2}}{e^{ E_2/2}+e^{- E_2/2}}\) and \(t_0^{\prime }=\frac{1}{e^{ E_2/2}+e^{- E_2/2}}\), we can solve the recursion for \(\tau _n\). The result is \(\tau _n=e^{ E_2/2}\frac{e^{ n E_2}-1}{e^{ E_2}-1}\). Plugging this into (B2) yields that

$$\begin{aligned} \mathbb {E}[t_0^r | L_0=n]=\frac{1}{2\cosh ( E_1/2)}\frac{e^{ (n+1) E_2}-1}{e^{ E_2}-1} \end{aligned}$$

Also for \(n=0\), that formula turns out to be accurate. That in turn explains the third equality of (B1). The fourth equality of (B1) is a simple rewriting involving no calculations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demaerel, T., Maes, C. Death and Resurrection of a Current by Disorder, Interaction or Periodic Driving. J Stat Phys 173, 99–119 (2018). https://doi.org/10.1007/s10955-018-2123-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-018-2123-9

Keywords

Navigation