Skip to main content
Log in

Phase Transition for Infinite Systems of Spiking Neurons

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We prove the existence of a phase transition for a stochastic model of interacting neurons. The spiking activity of each neuron is represented by a point process having rate 1 whenever its membrane potential is larger than a threshold value. This membrane potential evolves in time and integrates the spikes of all presynaptic neurons since the last spiking time of the neuron. When a neuron spikes, its membrane potential is reset to 0 and simultaneously, a constant value is added to the membrane potentials of its postsynaptic neurons. Moreover, each neuron is exposed to a leakage effect leading to an abrupt loss of potential occurring at random times driven by an independent Poisson point process of rate \( \gamma > 0 .\) For this process we prove the existence of a value \(\gamma _c\) such that the system has one or two extremal invariant measures according to whether \(\gamma > \gamma _c \) or not.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bertein, F., Galves, A.: Une classe de systèmes de particules stable par association. Z. Wahr. Verw. Gebiete 41, 73–85 (1977)

    Article  Google Scholar 

  2. Braitenberg, V., Schüz, A.: Cortex: Statistics and Geometry of Neuronal Connectivity, 2nd edn. Springer, Berlin (1998)

    Book  Google Scholar 

  3. Brémaud, P., Massoulié, L.: Imbedded construction of stationary sequences and point processes with a random memory. Queueing Syst. 17(1–2), 213–234 (1994)

    Article  MathSciNet  Google Scholar 

  4. Brochini, L., Costa, A.A., Abadi, M., Roque, A.C., Stolfi, J., Kinouchi, O.: Phase transitions and self-organized criticality in networks of stochastic spiking neurons. Sci. Rep. 6, 35831 (2016)

    Article  ADS  Google Scholar 

  5. Cowan, J.: Stochastic Wilson-Cowan equations for networks of excitatory and inhibitory neurons. (2011) http://www-sop.inria.fr/manifestations/SemesterCirm/slides/cowan

  6. De Masi, A., Galves, A., Löcherbach, E., Presutti, E.: Hydrodynamic limit for interacting neurons. J. Stat. Phys. 158(4), 866–902 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  7. Duarte, A., Ost, G., Rodríguez, A.A.: Hydrodynamic limit for spatially structured interacting neurons. J. Stat. Phys. 161(5), 1163–1202 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  8. Fournier, N., Löcherbach, E.: On a toy model of interacting neurons. In: Ann. Inst. H. Poincar Probab. Statist, vol. 52, pp. 1844–1876 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  9. Galves, A., Löcherbach, E.: Infinite systems of interacting chains with memory of variable length—a stochastic model for biological neural nets. J. Stat. Phys. 151(5), 896–921 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  10. Galves, A., Löcherbach, E.: Modeling networks of spiking neurons as interacting processes with memory of variable length. J. Société Française Stat. 157, 17–32 (2016)

    MathSciNet  MATH  Google Scholar 

  11. Griffeath, D.: The basic contact process. Stoch. Proc. Appl. 11, 151–185 (1981)

    Article  Google Scholar 

  12. Harris, T.E.: On a class of set-valued markov processes. Ann. Probab. 4(2), 175–194 (1976)

    Article  MathSciNet  Google Scholar 

  13. Harris, T.E.: Additive set-valued markov processes and graphical methods. Ann. Probab. 6(3), 355–378 (1978)

    Article  MathSciNet  Google Scholar 

  14. Kilpatrick, ZP.: Wilson-Cowan model. In: Encyclopedia of Computational Neuroscience, pp. 3159–3163. Springer, New York (2015)

    Google Scholar 

  15. Liggett, T.M.: Interacting Particle Systems. Springer, Berlin (1985)

    Book  Google Scholar 

  16. Rissanen, J.: A universal data compression system. IEEE Trans. Inf. Theory 29(5), 656–664 (1983)

    Article  MathSciNet  Google Scholar 

  17. Robert, P., Touboul, J.: On the dynamics of random neuronal networks. J. Stat. Phys. 165(3), 545–584 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  18. Sporns, O.: The non-random brain: efficiency, economy, and complex dynamics. Front. Comput. Neurosci. 5, 5 (2011)

    Article  Google Scholar 

  19. Wilson, H.R., Cowan, J.D.: Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J. 12(1), 1–24 (1972)

    Article  ADS  Google Scholar 

  20. Wilson, H.R., Cowan, J.D.: A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik 13(2), 55–80 (1973)

    Article  Google Scholar 

  21. Yaginuma, K.: A stochastic system with infinite interacting components to model the time evolution of the membrane potentials of a population of neurons. J. Stat. Phys. 163(3), 642–658 (2016)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

Many thanks to Marzio Cassandro and Christophe Pouzat for illuminating discussions, constructive criticism and useful information on neurobiology. This research has been conducted as part of the project Labex MME-DII (ANR11-LBX-0023-01) and it is part of USP project Mathematics, computation, language and the brain and of FAPESP project Research, Innovation and Dissemination Center for Neuromathematics (Grant 2013/07699-0). AG is partially supported by CNPq fellowship (Grant 311 719/2016-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Galves.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrari, P.A., Galves, A., Grigorescu, I. et al. Phase Transition for Infinite Systems of Spiking Neurons. J Stat Phys 172, 1564–1575 (2018). https://doi.org/10.1007/s10955-018-2118-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-018-2118-6

Keywords

Mathematics Subject Classification

Navigation