Appendix A: Cumulative Distribution of Firm Size
Figure 3 shows the cumulative distributions of firm size in Japan. As for the distribution of the annual sales in Panel a, an approximated power law exponent slightly decreases from 1.1 (1995) to 0.9 (2015). This indicates that large size of firms grow larger and middle-small size of firms shrink in their sizes; the gap widens. As for the distribution of the number of business transactions in Panel b, an approximated power law exponent keeps 1.3 from 1995 to 2015. However, a difference between the first and second highest number of business transactions grows larger. This also indicates that the firm-ecosystem comes close to the gelation phase.
Appendix B: Monte Carlo Simulation
As for our numerical analysis, we conducted Monte Carlo simulation as follows;
-
Step1
Start with \(N_{0}\) firms without any business transactions (\(N_{0}=10,000\) in Figs. 1 and . 2).
-
Step2
Choose one of the following three events stochastically.
-
Newcomer
:
-
A new node with n links is added into the system. Each new link is randomly connected to an already existing node with a probability given by the preferential attachment rule [16, 17] with exponent \(\lambda \). We decided that each new node has four links in order to keep the rate between the number of firms and the number of transaction partners [19]. This condition is not essential, and the main results do not change by replacing the numbers of newcomer’s links by random numbers with the same average, for example.
-
Annihilation
:
-
A node, chosen randomly with uniform probability, is removed along with all links connected to this node. This is because age of firms follow exponential distribution; it is roughly consistent with the simple assumption that a firm disappears randomly following a Poisson process [15, 19].
-
Coagulation
:
-
A pair of nodes, an acquiring node a and a target node t, are chosen randomly taking into account their link numbers to become proportional to the coagulation kernel, \( K(k_{a},k_{t}) \propto k_{a}^{\alpha } k_{t}^{\beta } \) [19]. The merger (coagulation) process conserves the sum of the link numbers except overlapping links.
-
Step3
Repeat Step2 for 5, 000, 000 times.
Figure 4 shows our algorithm by schematic diagram. The occurrence probabilities of newcomers, annihilations, and coagulations are denoted by \(r_{n}\), \(r_{a}\), and \(r_{c}\), respectively, satisfying \(r_{n} + r_{a} + r_{c} = 1\) (systems are quasi-stationally states when \(r_{n} = r_{a} + r_{c}\) in the number of nodes).
Appendix C: Simulated Time Depedence of Link Number k in Open Systems
Figure 5 shows the simulated time dependence of link number k in an open system with, which nodes may be injected and be deleted (i.e. enter and exit), initial 10, 000 nodes. Panel a the size of the node of maximum degree \(Q_{1}\). Panel b the moment \(M_{1,Q_{2}}(\tau )\), where \(Q_{2}\) is the size of the 2nd largest, and Panel c contains \(d{M}_{1,Q_{2}}/d\tau \).
The rates \(r_{n} : r_{a} : r_{c} \) are 0.5 : 0.0 : 0.5. Red line, green line, and blue line show the parameters \( (\lambda ,~\alpha ,~\beta ) = (1.0,~0.8,~0.6) \), (1.0, 1.1, 0.7) , and (1.0, 1.4, 0.8) , respectively. Each colored area shows the critical point of gelation \(\tau _{c}\) as given by the criteria \(d{M}_{1,Q_{2}}/d\tau = 0\). The time required to reach the onset of gelation \(\tau _{c}\) depends on the size of parameters and there would be parameter threshold effects as phase transition in the systems. We note that decrease of the size of the second largest, \(Q_{2}\), is caused both by annihilation of the nodes which are already connecting to \(Q_{2}\) and by less attachment of newcomers to this node as the largest node attracts most of newcomers by the preferential attachment with its dominant size. Namely, the effect of annihilation plays an important role to realize the critical time, \(\tau _{c}\), at a finite time, while gelation occurs only asymptotically in the infinite time in the model of Krapivsky et al. [26].
Appendix D: The Master Equation
We consider the version of the Smoluchowski equation for the link number k, \(c_{k}(\tau )\) relevant to the MTT model [15]. For the coagulation kernel we use the empirical form \( K(k_{a},k_{t}) \propto k_{a}^{\alpha } k_{t}^{\beta } \) [19] and get Eq. (1). The rates for creation, annihilation, and coagulation are denoted by \(r_{n}\), \(r_{a}\), and \(r_{c}\), respectively, we have the following equation approximately by assuming a quasi-stationary state for the mean node numbers, which is realized by the set of parameters, \(r_{n}=1/2,~r_{a}=1/2-r_{c}\).
$$\begin{aligned} \langle N \rangle dc_{k}/d\tau= & {} \frac{1}{\langle k^{\lambda } \rangle +1} \biggl [ \bigl [ (k-1)^{\lambda }+1 \bigr ] c_{k-1} - ( k^{\lambda }+1 ) c_{k} \biggr ] \nonumber \\&+ (1/2-r_{c})(k+1) ( c_{k+1}-c_{k} ) \nonumber \\&+ \frac{r_{c}}{(\langle k^{\alpha } \rangle +1)(\langle k^{\beta } \rangle +1)} \biggl [ \sum _{k'=0}^{k} (k'^{\alpha }+1) \bigl [ (k-k')^{\beta }+1 \bigr ] c_{k'}c_{k-k'} \nonumber \\&- \sum _{k'=0}^{\infty } (k'^{\alpha }+1)(k^{\beta }+1)c_{k'}c_{k} - \sum _{k'=0}^{\infty } (k^{\alpha }+1) (k'^{\beta }+1) c_{k}c_{k'} \biggr ]. \end{aligned}$$
(3)
For simplicity we write \(c_{k}(\tau )\) simply as \(c_{k}\). By use of symmetries, Eq. (3) is rewritten as
$$\begin{aligned} \langle N \rangle dc_{k}/d\tau= & {} \frac{1}{\langle k^{\lambda } \rangle +1} \biggl [ \bigl [ (k-1)^{\lambda }+1 \bigr ] c_{k-1} - ( k^{\lambda }+1 ) c_{k} \biggr ] \nonumber \\&+ (1/2-r_{c})(k+1) ( c_{k+1}-c_{k} ) \nonumber \\&+ \frac{r_{c}}{(\langle k^{\alpha } \rangle +1)(\langle k^{\beta } \rangle +1)} \biggl [ \sum _{k_{a}+k_{t}=k} ( k_{a}^{\alpha }k_{t}^{\beta } + k_{a}^{\beta }k_{t}^{\alpha } )c_{k_{a}}c_{k_{t}} \nonumber \\&- 2 \sum _{k_{t}=0}^{\infty } ( k^{\alpha }k_{t}^{\beta }+k^{\beta }k_{t}^{\alpha } )c_{k}c_{k_{t}} \biggr ]. \end{aligned}$$
(4)
By changing the scale factors for time \(\tau \) and distribution \(c_{k}\) as \(\langle N \rangle \tau ,~c_{k}\) and \((\langle k^{\alpha } \rangle +1)(\langle k^{\beta } \rangle +1)c_{k}\), we have the following simpler representation of Eq. (4), which does not change the results.
$$\begin{aligned} dc_{k}/d\tau= & {} \frac{1}{\langle k^{\lambda } \rangle +1} \biggl [ \bigl [ (k-1)^{\lambda }+1 \bigr ]c_{k-1} - (k^{\lambda }+1)c_{k} \biggr ] \nonumber \\&+ (1/2-r_{c})(k+1) ( c_{k+1}-c_{k} ) \nonumber \\&+ r_{c} \Biggl [ \sum _{k_{a}+k_{t}=k} (k_{a}^{\alpha }k_{t}^{\beta }+k_{a}^{\beta }k_{t}^{\alpha })c_{k_{a}}c_{k_{t}} -2 \sum _{k_{t}=0}^{\infty } (k^{\alpha }k_{t}^{\beta } + k^{\beta }k_{t}^{\alpha }) c_{k}c_{k_{t}} \Biggr ]. \end{aligned}$$
(5)
To study the criteria in Eq. (2), we consider \(M_{\lambda ,Q} \equiv \sum _{k=0}^{Q} k^{\lambda }c_{k}\) [22, 23]. We multiply both sides by k and sum these from 0 to Q in Eq. (5), where Q is maximum size of k. This way we obtain for the creation processes
$$\begin{aligned}&\frac{1}{\langle k^{\lambda } \rangle +1} \sum _{k=0}^{Q} k \Biggl [ \bigl [ (k-1)^{\lambda }+1 \bigr ]c_{k-1} - (k^{\lambda }+1)c_{k} \Biggr ] \nonumber \\&= \frac{1}{\langle k^{\lambda } \rangle +1} \Biggl [ \sum _{k=0}^{Q-1} (k+1) ( k^{\lambda }+1 )c_{k} - \sum _{k=0}^{Q} (k^{\lambda +1}+k)c_{k} \Biggr ] \nonumber \\&= \frac{1}{\langle k^{\lambda } \rangle +1} \Biggl [ \sum _{k=0}^{Q-1} ( k^{\lambda +1} + k^{\lambda } + k + 1 )c_{k} - M_{\lambda +1,Q} - M_{1,Q} \Biggr ] \nonumber \\&= \frac{1}{\langle k^{\lambda } \rangle +1} ( M_{\lambda +1,Q-1} + M_{\lambda ,Q-1} + M_{1,Q-1} + M_{0,Q-1} - M_{\lambda +1,Q} - M_{1,Q} ) \nonumber \\&= \frac{1}{\langle k^{\lambda } \rangle +1} ( M_{\lambda ,Q-1} + M_{0,Q-1} - Q^{\lambda +1}c_{Q} - Qc_{Q} ), \end{aligned}$$
(6)
and for the annihilation processes
$$\begin{aligned}&(1/2-r_{c})\sum _{k=0}^{Q} k(k+1) ( c_{k+1}-c_{k} ) \nonumber \\&\qquad = (1/2-r_{c})\Biggl [ \sum _{k=0}^{Q} \bigl [ (k+1)^{2} - (k+1) \bigr ]c_{k+1} - \sum _{k=0}^{Q} (k^{2} + k) c_{k} \Biggr ] \nonumber \\&\qquad = (1/2-r_{c})\Biggl [ \sum _{k=0}^{Q+1} (k^{2} - k)c_{k} - M_{2,Q} - M_{1,Q} \Biggr ] \nonumber \\&\qquad = (1/2-r_{c})\Biggl [ \sum _{k=0}^{Q} (k^{2} - k)c_{k} + \bigl [ (Q+1)^{2}-(Q+1) \bigr ] c_{Q+1} - M_{2,Q} - M_{1,Q} \Biggr ] \nonumber \\&\qquad = (1/2-r_{c})\bigl [ M_{2,Q} - M_{1,Q} + Q(Q+1)c_{Q+1} - M_{2,Q} - M_{1,Q} \bigr ] \nonumber \\&\qquad = (1/2-r_{c})\bigl [ Q(Q+1)c_{Q+1} - 2M_{1,Q} \bigr ]. \end{aligned}$$
(7)
Finally for the coagulation processes;
$$\begin{aligned}&r_{c} \Biggl [ \sum _{k=0}^{Q} k \sum _{k_{a}+k_{t}=k} (k_{a}^{\alpha }k_{t}^{\beta }+k_{a}^{\beta }k_{t}^{\alpha })c_{k_{a}}c_{k_{t}} -2 \sum _{k=0}^{Q} k \sum _{k_{t}=0}^{\infty } (k^{\alpha }k_{t}^{\beta }+k^{\beta }k_{t}^{\alpha }) c_{k}c_{k_{t}} \Biggr ] \nonumber \\&= r_{c} \Biggl [ \sum _{k=0}^{Q} \sum _{k_{a}+k_{t}=k} (k_{a}+k_{t})(k_{a}^{\alpha }k_{t}^{\beta }+k_{a}^{\beta }k_{t}^{\alpha })c_{k_{a}}c_{k_{t}} -2 \sum _{k_{a}=0}^{Q} \sum _{k_{t}=0}^{\infty } k_{a}(k_{a}^{\alpha }k_{t}^{\beta }+k_{a}^{\beta }k_{t}^{\alpha })c_{k_{a}}c_{k_{t}} \Biggr ] \nonumber \\&= r_{c} \Biggl [ \sum _{k_{a}=0}^{Q} \sum _{k_{t}=0}^{Q-k_{a}} 2k_{a}(k_{a}^{\alpha }k_{t}^{\beta }+k_{a}^{\beta }k_{t}^{\alpha })c_{k_{a}}c_{k_{t}} -2 \sum _{k_{a}=0}^{Q} \sum _{k_{t}=0}^{\infty } k_{a}(k_{a}^{\alpha }k_{t}^{\beta }+k_{a}^{\beta }k_{t}^{\alpha })c_{k_{a}}c_{k_{t}} \Biggr ] \nonumber \\&= - 2 r_{c} \sum _{k_{a}=0}^{Q} \sum _{k_{t}=Q-k_{a}+1}^{\infty } k_{a}(k_{a}^{\alpha }k_{t}^{\beta }+k_{a}^{\beta }k_{t}^{\alpha })c_{k_{a}}c_{k_{t}}. \end{aligned}$$
(8)
By combining Eqs. (6), (7) and (8), we get Eq. (9).
$$\begin{aligned} dM_{1,Q}/d\tau= & {} \frac{1}{\langle k^{\lambda } \rangle +1} ( M_{\lambda ,Q-1} + M_{0,Q-1} - Q^{\lambda +1}c_{Q} - Qc_{Q} ) \nonumber \\&+ (1/2-r_{c})\bigl [ Q(Q+1)c_{Q+1} - 2M_{1,Q} \bigr ] \nonumber \\&- 2 r_{c} \sum _{k_{a}=0}^{Q} \sum _{k_{t}=Q-k_{a}+1}^{\infty } k_{a}(k_{a}^{\alpha }k_{t}^{\beta }+k_{a}^{\beta }k_{t}^{\alpha })c_{k_{a}}c_{k_{t}}. \end{aligned}$$
(9)
Substitution of \( c_{k} = H(\tau )k^{-\gamma } \) at the gelation point [24] leads to Eqs. (10), (11) and (12) for \( k \gg 1\). The creation processes;
$$\begin{aligned}&\frac{1}{\langle k^{\lambda } \rangle +1} ( M_{\lambda ,Q-1} + M_{0,Q-1} - Q^{\lambda +1}H(\tau )Q^{-\gamma } - QH(\tau ) Q^{-\gamma } ) \nonumber \\&\qquad \approx \frac{1}{\langle k^{\lambda } \rangle +1} \bigl [ \langle k^{\lambda } \rangle + 1 - Q(Q^{\lambda }+1)H(\tau )Q^{-\gamma } \bigr ] \nonumber \\&\qquad \approx 1 - \frac{ Q^{\lambda -\gamma +1} }{\langle k^{\lambda } \rangle +1} H(\tau ). \end{aligned}$$
(10)
The annihilation processes;
$$\begin{aligned}&(1/2-r_{c}) \bigl [ Q(Q+1)H(\tau )(Q+1)^{-\gamma } - 2M_{1,Q} \bigr ] \nonumber \\&\qquad = (1/2-r_{c}) \biggl [ H(\tau ) \bigl [ (Q+1)^{2-\gamma } - (Q+1)^{1-\gamma } \bigr ] - 2 \langle k \rangle \biggr ] \nonumber \\&\qquad = (1/2-r_{c}) \biggl [ H(\tau ) \bigl [ Q^{2-\gamma } + (1-\gamma )Q^{1-\gamma } \bigr ] - 2 \langle k \rangle \biggr ]. \end{aligned}$$
(11)
The coagulation processes;
$$\begin{aligned}&- 2r_{c} \sum _{k_{a}=0}^{Q} \sum _{k_{t}=Q-k_{a}+1}^{\infty } k_{a}(k_{a}^{\alpha }k_{t}^{\beta }+k_{a}^{\beta }k_{t}^{\alpha })H(\tau )k_{a}^{-\gamma } H(\tau )k_{t}^{-\gamma } \nonumber \\&\qquad = - 2r_{c} [H(\tau )]^{2} \int _{0}^{Q} dk_{a} \int _{Q-k_{a}+1}^{\infty } dk_{t} ~~ k_{a}(k_{a}^{\alpha }k_{t}^{\beta } + k_{a}^{\beta }k_{t}^{\alpha }) (k_{a}k_{t})^{-\gamma } \nonumber \\&\qquad \approx -2r_{c} [H(\tau )]^{2} \int _{0}^{1} Qdx \int _{1-x}^{\infty } Qdy ~~ Qx \bigl [ (Qx)^{\alpha }(Qy)^{\beta } + (Qx)^{\beta } (Qy)^{\alpha } \bigr ](QxQy)^{-\gamma } \nonumber \\&\qquad = -2r_{c} [H(\tau )]^{2} Q^{3+\alpha +\beta -2\gamma } \int _{0}^{1} dx \int _{1-x}^{\infty } dy ~~ x (x^{\alpha }y^{\beta } + x^{\beta }y^{\alpha }) (xy)^{-\gamma }. \end{aligned}$$
(12)
Combining Eqs. (10), (11) and (12), we get Eq. (13).
$$\begin{aligned} dM_{1,Q}/d\tau\approx & {} 1 - \frac{Q^{\lambda -\gamma +1}}{\langle k^{\lambda } \rangle +1} H(\tau ) \nonumber \\&+ (1/2-r_{c}) \biggl [ H(\tau ) \bigl [ Q^{2-\gamma } + (1-\gamma )Q^{1-\gamma } \bigr ] - 2\langle k \rangle \biggr ] \nonumber \\&- 2r_{c} [H(\tau )]^{2} Q^{3+\alpha +\beta -2\gamma } \int _{0}^{1} dx \int _{1-x}^{\infty } dy ~~ x (x^{\alpha }y^{\beta }+x^{\beta }y^{\alpha }) (xy)^{-\gamma }.\nonumber \\ \end{aligned}$$
(13)
The third term of Eq. (13) can be replaced by the beta function, B, as follows;
$$\begin{aligned} \int _{0}^{1} dx \int _{1-x}^{\infty } dy ~ x (x^{\alpha }y^{\beta }+x^{\beta }y^{\alpha })(xy)^{-\gamma } = \frac{B(\bar{\alpha }+1,\bar{\beta }+1)}{\bar{\beta }} + \frac{B(\bar{\beta }+1,\bar{\alpha }+1)}{\bar{\alpha }}, \nonumber \\ \end{aligned}$$
(14)
where \(\bar{\alpha } = \alpha - \gamma + 2\) and \(\bar{\beta } = \beta - \gamma + 2\).