Skip to main content
Log in

Monte Carlo Study of Four-Dimensional Self-avoiding Walks of up to One Billion Steps

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study self-avoiding walks on the four-dimensional hypercubic lattice via Monte Carlo simulations of walks with up to one billion steps. We study the expected logarithmic corrections to scaling, and find convincing evidence in support the scaling form predicted by the renormalization group, with an estimate for the power of the logarithmic factor of 0.2516(14), which is consistent with the predicted value of 1/4. We also characterize the behaviour of the pivot algorithm for sampling four dimensional self-avoiding walks, and conjecture that the probability of a pivot move being successful for an N-step walk is \(O([ \log N ]^{-1/4})\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. E.g., in our case we may choose which how many terms to include in our fits, whereas for differential approximant analyses of series it is possible to vary the order of the differential equation.

References

  1. Bauerschmidt, R., Duminil-Copin, H., Goodman, J., Slade, G.: Lectures on Self-avoiding Walks. Probability and Statistical Physics in Two and More Dimensions. Clay Mathematics Proceedings 15, 395–467 (2012)

    MATH  MathSciNet  Google Scholar 

  2. Bauerschmidt, R., Brydges, D.C., Slade, G.: Critical two-point function of the 4-dimensional weakly self-avoiding walk. Commun. Math. Phys. 338, 169–193 (2015)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Bauerschmidt, R., Brydges, D.C., Slade, G.: Logarithmic correction for the susceptibility of the 4-dimensional weakly self-avoiding walk: a renormalisation group analysis. Commun. Math. Phys. 337, 817–877 (2015)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  4. Bauerschmidt, R., Slade, G., Tomberg, A., Wallace, B.C.: Finite-order correlation length for four-dimensional weakly self-avoiding walk and $|\varphi |^4$ spins. Ann. Henri Poincaré 18, 375–402 (2017)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  5. Binder, K., Paul, W., Strauch, T., Rampf, F., Ivanov, V., Luettmer-Strathmann, J.: Phase transitions of single polymer chains and of polymer solutions: insights from Monte Carlo simulations. J. Phys. Condens. Matter 20, 494215 (2008)

    Article  Google Scholar 

  6. Chen, M., Lin, K.Y.: Amplitude ratios for self-avoiding walks on hypercubic lattices in 4 to 6 dimensions. Chin. J. Phys. 41, 52–58 (2003)

    Google Scholar 

  7. Clisby, N.: Accurate estimate of the critical exponent \(\nu \) for self-avoiding walks via a fast implementation of the pivot algorithm. Phys. Rev. Lett. 104, 055702 (2010)

    Article  ADS  Google Scholar 

  8. Clisby, N.: Efficient implementation of the pivot algorithm for self-avoiding walks. J. Stat. Phys. 140, 349–392 (2010)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Clisby, N.: Scale-free Monte Carlo method for calculating the critical exponent of self-avoiding walks. J. Phys. A Math. Theor. 50, 264003 (2017)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. Clisby, N., Dünweg, B.: High-precision estimate of the hydrodynamic radius for self-avoiding walks. Phys. Rev. E 94, 052102 (2016)

    Article  ADS  Google Scholar 

  11. Clisby, N., Liang, R., Slade, G.: Self-avoiding walk enumeration via the lace expansion. J. Phys. A Math. Theor. 40, 10973–11017 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Duplantier, B.: Polymer chains in four dimensions. Nucl. Phys. B 275, 319–355 (1986)

    Article  ADS  Google Scholar 

  13. Grassberger, P.: Pruned-enriched Rosenbluth method: Simulations of $\theta $ polymers of chain length up to 1 000 000. Phys. Rev. E 56, 3682–3693 (1997)

    Article  ADS  Google Scholar 

  14. Grassberger, P., Hegger, R., Schäfer, L.: Self-avoiding walks in four dimensions: logarithmic corrections. J. Phys. A Math. Gen. 27, 7265–7282 (1994)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Hara, T., Slade, G.: The lace expansion for self-avoiding walk in five or more dimensions. Rev. Math. Phys. 4, 235–327 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hara, T., Slade, G.: Self-avoiding walk in five or more dimensions I. The critical behaviour. Commun. Math. Phys. 147, 101–136 (1992)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. Kennedy, T.: A faster implementation of the pivot algorithm for self-avoiding walks. J. Stat. Phys. 106, 407–429 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  18. Lal, M.: ‘Monte Carlo’ computer simulation of chain molecules. I. Mol. Phys. 17, 57–64 (1969)

    Article  ADS  Google Scholar 

  19. MacDonald, D., Hunter, D.L., Kelly, K., Jan, N.: Self-avoiding walks in two to five dimensions: exact enumerations and series study. J. Phys. A Math. Gen. 25, 1429–1440 (1992)

    Article  ADS  Google Scholar 

  20. Madras, N., Slade, G.: The Self-Avoiding Walk. Birkhaüser, Boston (1993)

    MATH  Google Scholar 

  21. Madras, N., Sokal, A.D.: The pivot algorithm: a highly efficient Monte Carlo method for the self-avoiding walk. J. Stat. Phys. 50, 109–186 (1988)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Nickerson, R.S.: Confirmation bias: a ubiquitous phenomenon in many guises. Rev. Gen. Psychol. 2, 175 (1998)

    Article  Google Scholar 

  23. Nienhuis, B.: Exact critical point and critical exponents of O($n$) models in two dimensions. Phys. Rev. Lett. 49, 1062–1065 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  24. Owczarek, A.L., Prellberg, T.: Scaling of self-avoiding walks in high dimensions. J. Phys. A Math. Gen. 34, 5773–5780 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. Tesi, M.C., Janse van Rensburg, E.J., Orlandini, E., Whittington, S.G.: Monte Carlo study of the interacting self-avoiding walk model in three dimensions. J. Stat. Phys. 82, 155–181 (1996)

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

Support from the Australian Research Council under the Future Fellowship scheme (Project Number FT130100972) and Discovery scheme (Project Number DP140101110) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan Clisby.

A Data

A Data

See Tables 1 and 2.

Table 1 Monte Carlo estimates of \(\langle R_{\mathrm {E}}^2 \rangle \), \(\langle R_{\mathrm {G}}^2 \rangle \), and \(\langle R_{\mathrm {E}}^2 \rangle / \langle R_{\mathrm {G}}^2 \rangle \)
Table 2 Monte Carlo estimates of the probability of a pivot move being successful, f, and the mean CPU time per pivot attempt

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clisby, N. Monte Carlo Study of Four-Dimensional Self-avoiding Walks of up to One Billion Steps. J Stat Phys 172, 477–492 (2018). https://doi.org/10.1007/s10955-018-2049-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-018-2049-2

Keywords

Navigation