Skip to main content
Log in

Quantitative Pointwise Estimate of the Solution of the Linearized Boltzmann Equation

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the quantitative pointwise behavior of the solutions of the linearized Boltzmann equation for hard potentials, Maxwellian molecules and soft potentials, with Grad’s angular cutoff assumption. More precisely, for solutions inside the finite Mach number region (time like region), we obtain the pointwise fluid structure for hard potentials and Maxwellian molecules, and optimal time decay in the fluid part and sub-exponential time decay in the non-fluid part for soft potentials. For solutions outside the finite Mach number region (space like region), we obtain sub-exponential decay in the space variable. The singular wave estimate, regularization estimate and refined weighted energy estimate play important roles in this paper. Our results extend the classical results of Liu and Yu (Commun Pure Appl Math 57:1543–1608, 2004), (Bull Inst Math Acad Sin 1:1–78, 2006), (Bull Inst Math Acad Sin 6:151–243, 2011) and Lee et al. (Commun Math Phys 269:17–37, 2007) to hard and soft potentials by imposing suitable exponential velocity weight on the initial condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Adams, R., Fournier, J.: Sobolev Spaces, vol. 140, 2nd edn. Academic Press, New York (2003)

    MATH  Google Scholar 

  2. Caflisch, R.: The Boltzmann equation with a soft potential. I. Linear, spatially homogeneous. Commun. Math. Phys. 74, 71–95 (1980)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Chen, C.-C., Liu, T.-P., Yang, T.: Existence of boundary layer solutions to the Boltzmann equation. Anal. Appl. 2, 337–363 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ellis, R., Pinsky, M.: The first and second fluid approximations to the linearized Boltzmann equation. J. Math. Pures Appl. 54, 125–156 (1975)

    MathSciNet  MATH  Google Scholar 

  5. Glassey, R.: The Cauchy Problem in Kinetic Theory. SIAM, Philadelphia (1996)

    Book  MATH  Google Scholar 

  6. Golse, F., Poupaud, F.: Stationary solutions of the linearized Boltzmann equation in a half-space. Math. Methods Appl. Sci. 11, 483–502 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Grad, H.: Asymptotic theory of the Boltzmann equation. In: Laurmann, J.A. (ed.) Rarefied Gas Dynamics, pp. 26–59. Academic Press, New York (1963). 1, 26

    Google Scholar 

  8. Gualdani, M.P., Mischler, S., Mouhot, C.: Factorization of non-symmetric operators and exponential H-theorem, to appear as a Mémoire de la Société Mathématique de France

  9. Kawashima, S.: The Boltzmann equation and thirteen moments. Jpn. J. Appl. Math. 7, 301–320 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lee, M.-Y., Liu, T.-P., Yu, S.-H.: Large time behavier of solutions for the Boltzmann equation with hard potentials. Commun. Math. Phys. 269, 17–37 (2007)

    Article  ADS  Google Scholar 

  11. Liu, T.-P., Yu, S.-H.: The Green function and large time behavier of solutions for the one-dimensional Boltzmann equation. Commun. Pure Appl. Math. 57, 1543–1608 (2004)

    Article  MATH  Google Scholar 

  12. Liu, T.-P., Yu, S.-H.: Green’s function of Boltzmann equation, 3-D waves. Bull. Inst. Math. Acad. Sin. 1, 1–78 (2006)

    ADS  MathSciNet  MATH  Google Scholar 

  13. Liu, T.-P., Yu, S.-H.: Solving Boltzmann equation, Part I : Green’s function. Bull. Inst. Math. Acad. Sin. 6, 151–243 (2011)

    MathSciNet  Google Scholar 

  14. Strain, R.M.: Optimal time decay of the non cut-off Boltzmann equation in the whole space. Kinet. Relat. Models 5, 583–613 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Strain, R.M., Guo, Y.: Exponential decay for soft potentials near Maxwellian. Arch. Ration. Mech. Anal. 187, 287–339 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Taylor, M.E.: Partial Differential Equations, III. Applied Mathematical Sciences, vol. 117. Springer, New York (1997). Nonlinear equations; Corrected reprint of the 1996 original

    Google Scholar 

  17. Ukai, S., Yang, T.: Mathematical Theory of Boltzmann Equation (Lecture Note)

  18. Wang, H.T., Wu, K.-C.: Solving linearized Landau equation pointwisely, submitted. arXiv:1709.00839

  19. Wu, K.-C.: Pointwise behavior of the linearized Boltzmann equation on a torus. SIAM J. Math. Anal. 46, 639–656 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kung-Chien Wu.

Additional information

Yu-Chu Lin is supported by the Ministry of Science and Technology under the Grant MOST 105-2115-M-006-002-. Haitao Wang is sponsored by Shanghai Sailing Program (18YF1411800). Kung-Chien Wu is supported by the Ministry of Science and Technology under the Grant 104-2628-M-006-003-MY4 and National Center for Theoretical Sciences.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, YC., Wang, H. & Wu, KC. Quantitative Pointwise Estimate of the Solution of the Linearized Boltzmann Equation. J Stat Phys 171, 927–964 (2018). https://doi.org/10.1007/s10955-018-2047-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-018-2047-4

Keywords

Mathematics Subject Classification

Navigation