Skip to main content

Advertisement

Log in

On the Geometry of Chemical Reaction Networks: Lyapunov Function and Large Deviations

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In an earlier paper, we proved the validity of large deviations theory for the particle approximation of quite general chemical reaction networks. In this paper, we extend its scope and present a more geometric insight into the mechanism of that proof, exploiting the notion of spherical image of the reaction polytope. This allows to view the asymptotic behavior of the vector field describing the mass-action dynamics of chemical reactions as the result of an interaction between the faces of this polytope in different dimensions. We also illustrate some local aspects of the problem in a discussion of Wentzell–Freidlin theory, together with some examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. It can happen that several reactions maximize the scalar product. This will be discussed later.

  2. Where the angle between hyperplanes \(B,\,B' \subset \mathbb {R}^{d_\mathcal {P}}\) passing through the origin is \(\angle (B,\,B') := \arccos (\max \{\min \{|\langle b,\,b' \rangle |:b \in B,\, \Vert b\Vert _2 = 1\}:b' \in B',\, \Vert b'\Vert _2 = 1\})\).

  3. Assuming that the set \({\mathcal {D}}\) respects [1, Assumption A.3].

References

  1. Agazzi, A., Dembo, A., Eckmann, J.P.: Large deviations theory for Markov jump models of chemical reaction networks. Ann. Appl. Probab. (to appear, 2018)

  2. Agazzi, A., Mattingly, J.: (in preparation)

  3. Alexandrov, A.D.: Convex Polyhedra. Springer, Berlin (2005)

    MATH  Google Scholar 

  4. Anderson, D.F., Craciun, G., Gopalkrishnan, M., Wiuf, C.: Lyapunov functions, stationary distributions, and non-equilibrium potential for reaction networks. Bull. Math. Biol. 77(9), 1744–1767 (2015). https://doi.org/10.1007/s11538-015-0102-8

    Article  MathSciNet  MATH  Google Scholar 

  5. Bendixson, I.: Sur les courbes définies par des équations différentielles. Acta Math. 24, 1–88 (1901). https://doi.org/10.1007/BF02403068

    Article  MathSciNet  MATH  Google Scholar 

  6. Bergman, G.M.: The logarithmic limit-set of an algebraic variety. Trans. Am. Math. Soc. 157, 459–469 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bieri, R., Groves, J.R.: The geometry of the set of characters induced by valuations. J. die reine angew. Math. 347, 168–195 (1984)

    MathSciNet  MATH  Google Scholar 

  8. Bouchet, F., Gawedzki, K., Nardini, C.: Perturbative calculation of quasi-potential in non-equilibrium diffusions: a mean-field example. J. Stat. Phys. 163(5), 1157–1210 (2016). https://doi.org/10.1007/s10955-016-1503-2

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Brugallé, E., Itenberg, I., Mikhalkin, G., Shaw, K.: Brief introduction to tropical geometry. arXiv preprint arXiv:1502.05950 (2015)

  10. Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications. Applications of Mathematics (New York), vol. 38, 2nd edn. Springer, New York (1998). https://doi.org/10.1007/978-1-4612-5320-4

  11. Dupuis, P., Ramanan, K., Wu, W.: Large deviation principle for finite-state mean field interacting particle systems. ArXiv preprint arXiv:1601.06219 (2016)

  12. Ethier, S.N., Kurtz, T.G.: Markov Processes: Characterization and Convergence. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. Wiley, New York (1986). https://doi.org/10.1002/9780470316658

    Google Scholar 

  13. Feinberg, M.: Chemical reaction network structure and the stability of complex isothermal reactors—I. The deficiency zero and deficiency one theorems. Chem. Eng. Sci. 42(10), 2229–2268 (1987). https://doi.org/10.1016/0009-2509(87)80099-4

    Article  Google Scholar 

  14. Freidlin, M.I., Wentzell, A.D.: Random perturbations of dynamical systems. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] (translated from the Russian by Joseph Szücs), vol. 260. Springer, New York (1984). https://doi.org/10.1007/978-1-4684-0176-9

  15. Gaveau, B., Moreau, M., Toth, J.: Variational nonequilibrium thermodynamics of reaction–diffusion systems. I. The information potential. J. Chem. Phys. 111(17), 7736–7747 (1999)

    Article  ADS  Google Scholar 

  16. Ge, H., Qian, H.: Non-equilibrium phase transition in mesoscopic biochemical systems: from stochastic to nonlinear dynamics and beyond. J. R. Soc. Interface 8(54), 107–116 (2010). http://rsif.royalsocietypublishing.org/content/8/54/107

  17. Gopalkrishnan, M., Miller, E., Shiu, A.: A geometric approach to the global attractor conjecture. SIAM J. Appl. Dyn. Syst. 13(2), 758–797 (2014). https://doi.org/10.1137/130928170

    Article  MathSciNet  MATH  Google Scholar 

  18. Graham, R., Tél, T.: Nonequilibrium potential for coexisting attractors. Phys. Rev. A 33, 1322–1337 (1986). https://link.aps.org/doi/10.1103/PhysRevA.33.1322

  19. Gunawardena, J.: Chemical reaction network theory for in-silico biologists (preprint, 2003)

  20. Gupta, A., Khammash, M.: Determining the long-term behavior of cell populations: a new procedure for detecting ergodicity in large stochastic reaction networks. IFAC Proc. Vol. 47(3), 1711–1716 (2014)

    Article  Google Scholar 

  21. Horn, F., Jackson, R.: General mass action kinetics. Arch. Ration. Mech. Anal. 47(2), 81–116 (1972). https://doi.org/10.1007/BF00251225

    Article  MathSciNet  Google Scholar 

  22. Ilyashenko, Y.: Centennial history of Hilbert’s 16th problem. Bull. Am. Math. Soc. 39(3), 301–354 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Maclagan, D., Sturmfels, B.: Introduction to Tropical Geometry, vol. 161. American Mathematical Society, Providence (2015)

    MATH  Google Scholar 

  24. Magnasco, M.O.: Chemical kinetics is Turing universal. Phys. Rev. Lett. 78(6), 1190 (1997)

    Article  ADS  Google Scholar 

  25. Pachter, L., Sturmfels, B.: Algebraic Statistics for Computational Biology, vol. 13. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  26. Petri, C.A.: Kommunikation mit automaten. PhD Thesis, Universiät Hamburg (1962)

  27. Roux, J., Rossi, A., Bachelart, S., Vidal, C.: Representation of a strange attractor from an experimental study of chemical turbulence. Phys. Lett. A 77(6), 391–393 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  28. Schlögl, F.: Chemical reaction models for non-equilibrium phase transitions. Z. Phys. 253(2), 147–161 (1972). https://doi.org/10.1007/BF01379769

    Article  ADS  MathSciNet  Google Scholar 

  29. Shwartz, A., Weiss, A.: Large Deviations for Performance Analysis: Queues, Communications, and Computing, with an Appendix by Robert J. Vanderbei. Stochastic Modeling Series. Chapman and Hall, London (1995)

  30. Shwartz, A., Weiss, A.: Large deviations with diminishing rates. Math. Oper. Res. 30(2), 281–310 (2005). https://doi.org/10.1287/moor.1040.0121

    Article  MathSciNet  MATH  Google Scholar 

  31. Touchette, H.: The large deviation approach to statistical mechanics. Phys. Rep. 478(1), 1–69 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  32. Van Kampen, N.: Stochastic Processes in Physics and Chemistry, vol. 1. Elsevier, Amsterdam (1992)

    MATH  Google Scholar 

  33. Wilhelm, T.: The smallest chemical reaction system with bistability. BMC Syst. Biol. 3(1), 90 (2009). https://doi.org/10.1186/1752-0509-3-90

    Article  Google Scholar 

  34. Zhang, D., Györgyi, L., Peltier, W.R.: Deterministic chaos in the Belousov–Zhabotinsky reaction: experiments and simulations. Chaos Interdiscip. J. Nonlinear Sci. 3(4), 723–745 (1993)

    Article  Google Scholar 

  35. Zhou, P., Li, T.: Construction of the landscape for multi-stable systems: potential landscape, quasi-potential, A-type integral and beyond. J. Chem. Phys. 144(9), 094109 (2016). https://doi.org/10.1063/1.4943096

    Article  ADS  Google Scholar 

Download references

Acknowledgements

AA’s and JPE’s Research was partially supported by ERC Advanced Grant 290843 (BRIDGES). AA also acknowledges the SNSF Grant 161866. AD’s research was partially supported by NSF Grant DMS-1613091.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-P. Eckmann.

Additional information

To Herbert, Jürg, and Tom, friends and inspirations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agazzi, A., Dembo, A. & Eckmann, JP. On the Geometry of Chemical Reaction Networks: Lyapunov Function and Large Deviations. J Stat Phys 172, 321–352 (2018). https://doi.org/10.1007/s10955-018-2035-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-018-2035-8

Keywords

Navigation