Skip to main content
Log in

A Continuum of Pure States in the Ising Model on a Halfplane

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the homogeneous nearest–neighbor Ising ferromagnet on the right half plane with a Dobrushin type boundary condition—say plus on the top part of the boundary and minus on the bottom. For sufficiently low temperature T, we completely characterize the pure (i.e., extremal) Gibbs states, as follows. There is exactly one for each angle \(\theta \in [-\pi /2,+\pi /2]\); here \(\theta \) specifies the asymptotic angle of the interface separating regions where the spin configuration looks like that of the plus (respectively, minus) full-plane state. Some of these conclusions are extended all the way to \(T=T_{c}\) by developing new Ising exact solution results—in particular, there is at least one pure state for each \(\theta \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ablowitz, M.J., Fokas, A.S.: Complex Variables: Introduction and Applications. Cambridge University Press, Cambridge (2003)

    Book  MATH  Google Scholar 

  2. Abraham, D.B., Reed, P.: Phase separation in the two-dimensional Ising ferromagnet. Phys. Rev. Lett. 33, 377–379 (1974)

    Article  ADS  Google Scholar 

  3. Abraham, D.B., Reed, P.: Interface profile of the Ising ferromagnet in two dimensions. Commun. Math. Phys. 49, 35–46 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  4. Abraham, D.B., Upton, P.J.: Interface at general orientation in a two-dimensional Ising model. Phys. Rev. B 37, 3835–3837 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  5. Aizenman, M.: Translation invariance and instability of phase coexistence in the two-dimensional Ising system. Commun. Math. Phys. 73, 83–94 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  6. Basuev, A.G.: Ising model in half-space: a series of phase transitions in low magnetic fields. Theor. Math. Phys. 153, 1539–1574 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bleher, P.M.: Extremity of the disordered phase in the Ising model on the Bethe lattice. Commun. Math. Phys. 128, 411–419 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  8. Bleher, P.M., Ganikhodzhaev, N.N.: On pure phases of the Ising model on the Bethe lattices. Teor. Veroyatnostei I Ee Primen. 35, 220–230 (1990)

    MathSciNet  Google Scholar 

  9. Campanino, M., Ioffe, D., van Velenik, Y.: Ornstein-Zernike theory for finite range Ising models above \(T_{c}\). Probab. Theory Rel. Fields 125, 305–349 (2003)

    Article  MATH  Google Scholar 

  10. Dobrushin, R.L.: Gibbsian random fields for lattice systems with mutual interaction. Funct. Anal. Appl. 2, 31–43 (1968)

    Article  Google Scholar 

  11. Dobrushin, R.L.: The Gibbs state that describes the coexistence of phases for a three-dimensional Ising model. Teor. Veroyatnostei i Ee Primenen. 17, 619–639 (1972)

    MathSciNet  Google Scholar 

  12. Dobrushin, R.L., Shlosman, S.: “Non-Gibbsian” states and their Gibbs description. Commun. Math. Phys. 200, 125–179 (1999)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  13. Dobrushin, R.L., Kotecky, R., Shlosman, S.B.: Wulff Construction: A Global Shape from Local Interaction. AMS Translations Series, Providence (1992)

    Book  MATH  Google Scholar 

  14. Fisher, M.P., Fisher, D.S., Weeks, J.D.: Agreement of capillary-wave theory with exact results for the interface profile of the two-dimensional Ising model. Phys. Rev. Lett. 48, 368–368 (1982)

    Article  ADS  Google Scholar 

  15. Gandolfo, D., Ruiz, J., Shlosman, S.: A manifold of pure Gibbs states of the Ising model on a Cayley tree. J. Stat. Phys. 148, 999–1005 (2012)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  16. Gandolfo, D., Maes, Ch., Ruiz, J., Shlosman, S.: Glassy states: the free Ising model on a tree. arXiv:1709.00543

  17. Georgi, H.-O.: Gibbs Measures and Phase Transitions. Walter de Gruyter, Berlin (1988)

    Book  Google Scholar 

  18. Higuchi, Y.: On the absence of non-translation invariant Gibbs states for the two-dimensional Ising model. In: Fritz, J., Lebowitz, J.L., Szász, D. (eds.) Random Fields, Esztergom (Hungary), vol. I, pp. 517–534. North-Holland, Amsterdam (1979)

    Google Scholar 

  19. Ioffe, D., Shlosman, S., Toninelli, F.: Interaction versus entropic repulsion for low temperature Ising polymers. J. Stat. Phys. 158, 1007–1050 (2015)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  20. Kaufman, B.: Crystal statistics. II. Partition function evaluated by spinor analysis. Phys. Rev. 76, 1232–1243 (1949)

    Article  MATH  ADS  Google Scholar 

  21. Lanford, O.E., Ruelle, D.: Observables at infinity and states with short range correlations in statistical mechanics. Commun. Math. Phys. 13, 194–215 (1969)

    Article  MathSciNet  ADS  Google Scholar 

  22. McCoy, B.M., Wu, T.T.: The Two-dimensional Ising Model. Harvard University Press, Cambridge (1973)

    Book  MATH  Google Scholar 

  23. Onsager, L.: Crystal statistics. I. A two-dimensional model with an order-disorder transition. Phys. Rev. 65, 117–149 (1944)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  24. Schultz, T.D., Mattis, D.C., Lieb, E.H.: Two-dimensional Ising model as a soluble problem of many fermions. Rev. Mod. Phys. 36, 856–871 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  25. Shlosman, S.B.: Uniqueness and half-space nonuniqueness of Gibbs states in Czech models. Theor. Math. Phys. 66, 284–293 (1986)

    Article  MathSciNet  Google Scholar 

  26. van Enter, A.C.D., Miekisz, J.: Breaking of periodicity at positive temperatures. Commun. Math. Phys. 134, 647–651 (1990)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  27. van Enter, A.C.D., Miekisz, J., Zahradník, M.: Nonperiodic long-range order for fast-decaying interactions at positive temperatures. J. Stat. Phys. 90, 1441–1447 (1998)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  28. White, O.L., Fisher, D.S.: Scenario for spin-glass phase with infinitely many states. Phys. Rev. Lett. 96, 137204 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Part of this work has been carried out in the framework of the Labex Archimede (ANR-11-LABX-0033) and of the A*MIDEX project (ANR-11-IDEX-0001-02), funded by the “Investissements d’Avenir” French Government program managed by the French National Research Agency (ANR). Part of this work has been carried out by SS at IITP RAS. The support of Russian Foundation for Sciences (Project No. 14-50-00150) is gratefully acknowledged. The research of CMN was supported in part by US-NSF Grant DMS-1507019. The authors thank Alessio Squarcini for help with TeX issues; they also thank an anonymous referee for useful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Senya Shlosman.

Additional information

We join with the other contributors to this special issue of JSP to acknowledge the many contributions to Mathematical and Statistical Physics made over the years by Juerg Froehlich, Tom Spencer and Herbert Spohn. May they each live and be well to one hundred twenty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abraham, D., Newman, C.M. & Shlosman, S. A Continuum of Pure States in the Ising Model on a Halfplane. J Stat Phys 172, 611–626 (2018). https://doi.org/10.1007/s10955-017-1918-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-017-1918-4

Keywords

Navigation