Skip to main content
Log in

Role of Interactions and Correlations on Collective Dynamics of Molecular Motors Along Parallel Filaments

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Cytoskeletal motors known as motor proteins are molecules that drive cellular transport along several parallel cytoskeletal filaments and support many biological processes. Experimental evidences suggest that they interact with the nearest molecules of their filament while performing any mechanical work. These interactions modify the microscopic level properties of motor proteins. In this work, a new version of two-channel totally asymmetric simple exclusion process, that incorporates the intra-channel interactions in a thermodynamically consistent way, is proposed. As the existing approaches for multi-channel systems deviate from analyzing the combined effect of inter and intra-channel interactions, a new approach known as modified vertical cluster mean field is developed. The approach along with Monte Carlo simulations successfully encounters some correlations and computes the complex dynamic properties of the system. Role of symmetry of interactions and inter-channel coupling is observed on the phase diagrams, maximal particle current and its corresponding optimal interaction strength. Surprisingly, for all values of coupling rate and most of the interaction splittings, the optimal interaction strength corresponding to maximal current belongs to the case of weak repulsive interactions. Moreover, for weak interaction splittings and with an increase in the coupling rate, the optimal interaction strength tends towards the known experimental results. The effect of coupling as well as interaction energy is also measured for correlations. They are found to be short-range and weaker for repulsive and weak attractive interactions while they are long-range and stronger for large attractions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alberts, B., Johnson, A., Lewis, J., Walter, P., Raff, M., Roberts, K.: Molecular Biology of the Cell, vol. 4. Garland Science, New York (2002)

    Google Scholar 

  2. Dennis, B.: Cell Movements: From Molecules to Motility. Garland Science, New York (2001)

    Google Scholar 

  3. Howard, J., et al.: Mechanics of Motor Proteins and the Cytoskeleton. University of Washington, Seattle (2001)

    Google Scholar 

  4. Kolomeisky, A.B., Fisher, M.E.: Molecular motors: a theorist’s perspective. Annu. Rev. Phys. Chem. 58, 675–695 (2007)

    Article  ADS  Google Scholar 

  5. Debashish, C.: Stochastic mechano-chemical kinetics of molecular motors: a multidisciplinary enterprise from a physicist’s perspective. Phys. Rep. 529(1), 1–197 (2013)

    Article  Google Scholar 

  6. Kolomeisky, A.B.: Motor proteins and molecular motors: how to operate machines at the nanoscale. J. Phys. Condens. Matter 25(46), 463101 (2013)

    Article  ADS  Google Scholar 

  7. Kolomeisky, A.B.: Motor Proteins and Molecular Motors. CRC Press, Boca Raton (2015)

    Google Scholar 

  8. Schliwa, M., Woehlke, G.: Molecular motors. Nature 422(6933), 759–765 (2003)

    Article  ADS  Google Scholar 

  9. Claudia, V., Christoph, F.S.: Moving into the cell: single-molecule studies of molecular motors in complex environments. Nat. Rev. Mol. Cell Biol. 12(3), 163–176 (2011)

    Article  Google Scholar 

  10. Ally, S., Adam, G.L., Kari, B., Sarah, E.R., Vladimir, I.G.: Opposite-polarity motors activate one another to trigger cargo transport in live cells. J. Cell Biol. 187(7), 1071–1082 (2009)

    Article  Google Scholar 

  11. Driver, J.W., Jamison, D.K., Uppulury, K., Rogers, A.R., Kolomeisky, A.B., Diehl, M.R.: Productive cooperation among processive motors depends inversely on their mechanochemical efficiency. Biophys. J. 101(2), 386–395 (2011)

    Article  ADS  Google Scholar 

  12. Driver, J.W., Rogers, A.R., Jamison, D.K., Das, R.K., Kolomeisky, A.B., Diehl, M.R.: Coupling between motor proteins determines dynamic behaviors of motor protein assemblies. Phys. Chem. Chem. Phys. 12(35), 10398–10405 (2010)

    Article  Google Scholar 

  13. Neri, I., Kern, N., Parmeggiani, A.: Exclusion processes on networks as models for cytoskeletal transport. N. J. Phys. 15(8), 085005 (2013)

    Article  Google Scholar 

  14. Uppulury, K., Efremov, A.K., Driver, J.W., Jamison, D.K., Diehl, M.R., Kolomeisky, A.B.: How the interplay between mechanical and nonmechanical interactions affects multiple kinesin dynamics. J. Phys. Chem. B 116(30), 8846–8855 (2012)

    Article  Google Scholar 

  15. Berger, F., Keller, C., Klumpp, S., Lipowsky, R.: Distinct transport regimes for two elastically coupled molecular motors. Phys. Rev. Lett. 108(5), 208101 (2012)

    Article  ADS  Google Scholar 

  16. Keller, C., Berger, F., Liepelt, S., Lipowsky, R.: Network complexity and parametric simplicity for cargo transport by two molecular motors. J. Stat. Phys. 150(2), 205–234 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Berger, F., Keller, C., Klumpp, S., Lipowsky, R.: External forces influence the elastic coupling effects during cargo transport by molecular motors. Phys. Rev. E 91(022701), 022701 (2015)

    Article  ADS  Google Scholar 

  18. Roos, W.H., Montel, F., Spatz, J.P., Bassereau, P., Cappello, G., et al.: Dynamic kinesin-1 clustering on microtubules due to mutually attractive interactions. Phys. Biol. 5(4), 046004 (2008)

    Article  ADS  Google Scholar 

  19. Andrej, V., Erwin, F., Franz, S., Manfred, T., Young-Hwa, S., Eckhard, M.: Dynamics and cooperativity of microtubule decoration by the motor protein kinesin11 Edited by W. Baumeister. J. Mol. Biol. 312, 1011–1026 (2001)

    Article  Google Scholar 

  20. Seitz, A., Surrey, T.: Processive movement of single kinesins on crowded microtubules visualized using quantum dots. EMBO J. 25(2), 267–277 (2006)

    Article  Google Scholar 

  21. MacDonald, C.T., Gibbs, J.H., Pipkin, A.C.: Kinetics of biopolymerization on nucleic acid templates. Biopolymers 6(1), 1–25 (1968)

    Article  Google Scholar 

  22. Belitsky, V., Krug, J., Neves, E.J., Schütz, G.M.: A cellular automaton model for two-lane traffic. J. Stat. Phys. 107(5–6), 945–971 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  23. Chowdhury, D., Garai, A., Wang, J.-S.: Traffic of single-headed motor proteins KIF1A: effects of lane changing. Phys. Rev. E 77(5), 050902 (2008)

    Article  ADS  Google Scholar 

  24. Widom, B., Viovy, J.L., Defontaines, A.D.: Repton model of gel electrophoresis and diffusion. J. Phys. I 1(12), 1759–1784 (1991)

    Google Scholar 

  25. Chou, T., Mallick, K., Zia, R.K.P.: Non-equilibrium statistical mechanics: from a paradigmatic model to biological transport. Rep. Prog. Phys. 74(11), 116601 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  26. Dong, J., Klumpp, S., Zia, R.K.P.: Entrainment and unit velocity: surprises in an accelerated exclusion process. Phys. Rev. Lett. 109(13), 130602 (2012)

    Article  ADS  Google Scholar 

  27. Campas, O., Kafri, Y., Zeldovich, K.B., Casademunt, J., Joanny, J.-F.: Collective dynamics of interacting molecular motors. Phys. Rev. Lett. 97(3), 038101 (2006)

    Article  ADS  Google Scholar 

  28. Klumpp, S., Lipowsky, R.: Phase transitions in systems with two species of molecular motors. Europhys. Lett. (EPL) 66(1), 90 (2004)

    Article  ADS  Google Scholar 

  29. Pinkoviezky, I., Gov, N.S.: Modelling interacting molecular motors with an internal degree of freedom. N. J. Phys. 15(2), 025009 (2013)

    Article  Google Scholar 

  30. Slanina, F.: Interaction of molecular motors can enhance their efficiency. Europhys. Lett. (EPL) 84(5), 50009 (2008)

    Article  ADS  Google Scholar 

  31. Teimouri, H., Kolomeisky, A.B., Mehrabiani, K.: Theoretical analysis of dynamic processes for interacting molecular motors. J. Phys. A 48(6), 065001 (2015)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  32. Daniel, C.-G., Hamid, T., Kolomeisky, A.B.: Correlations and symmetry of interactions influence collective dynamics of molecular motors. J. Stat. Mech. 2015(4), P04013 (2015)

    Article  Google Scholar 

  33. Hao, Q.-Y., Jiang, R., Hu, M.-B., Jia, B., Wang, W.-X.: Exponential decay of spatial correlation in driven diffusive system: a universal feature of macroscopic homogeneous state. Sci. Rep. 6(19652), 19652 (2016)

    Article  ADS  Google Scholar 

  34. Hao, Q.-Y., Chen, Z., Sun, X.-Y., Liu, B.-B., Wu, C.-Y.: Theoretical analysis and simulation for a facilitated asymmetric exclusion process. Phys. Rev. E 94(2), 022113 (2016)

    Article  ADS  Google Scholar 

  35. Shaebani, M.R., Sadjadi, Z., Sokolov, I.M., Rieger, H., Santen, L.: Anomalous diffusion of self-propelled particles in directed random environments. Phys. Rev. E 90(3), 030701 (2014)

    Article  ADS  Google Scholar 

  36. Curatolo, A.I., Evans, M.R., Kafri, Y., Tailleur, J.: Multilane driven diffusive systems. J. Phys. A 49(9), 095601 (2016)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  37. Schiffmann, C., Appert-Rolland, C., Santen, L.: Shock dynamics of two-lane driven lattice gases. J. Stat. Mech. 2010(06), P06002 (2010)

    Article  Google Scholar 

  38. Evans, M.R., Kafri, Y., Sugden, K.E.P., Tailleur, J.: Phase diagrams of two-lane driven diffusive systems. J. Stat. Mech. 2011(06), P06009 (2011)

    Article  Google Scholar 

  39. Ekaterina, P., Kolomeisky, A.B.: Two-channel totally asymmetric simple exclusion processes. J. Phys. A 37(42), 9907 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  40. Ekaterina, P., Kolomeisky, A.B.: Asymmetric coupling in two-channel simple exclusion processes. Physics A 372(1), 12–21 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  41. Juhasz, R.: Weakly coupled, antiparallel, totally asymmetric simple exclusion processes. Phys. Rev. E 76(2), 021117 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  42. Popkov, V., Salerno, M.: Hydrodynamic limit of multichain driven diffusive models. Phys. Rev. E 69(4), 046103 (2004)

    Article  ADS  Google Scholar 

  43. Arvind Kumar, G.: Coupling of two asymmetric exclusion processes with open boundaries. Physica A 392(24), 6314–6329 (2013)

    Article  MathSciNet  Google Scholar 

  44. Derrida, B., Domany, E., Mukamel, D.: An exact solution of a one-dimensional asymmetric exclusion model with open boundaries. J. Stat. Phys. 69(3–4), 667–687 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  45. Derrida, B., Evans, M.R., Vincent, H., Vincent, P.: Exact solution of a 1d asymmetric exclusion model using a matrix formulation. J. Phys. A 26(7), 1493 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  46. Derrida, B., Evans, M.R.: Bethe ansatz solution for a defect particle in the asymmetric exclusion process. J. Phys. A 32(26), 4833 (1999)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  47. Lakatos, G., Chou, T.: Totally asymmetric exclusion processes with particles of arbitrary size. J. Phys. A 36(8), 2027 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

A.K. Gupta gratefully acknowledges the financial support from Department of Science and Technology (DST) (Grant No. SB/FTP/MS-001/2013), Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvind Kumar Gupta.

Appendices

Appendix A: Expression for bulk current using VCMF approach:

The vertical cluster mean field approach is utilized to compute the bulk current for all eight possible configurations (shown in Fig. 2) contributing to the particle movement in bulk. The total bulk current in the system is an algebraic sum of currents from all of these configurations. We first compute the particle current corresponding to configurations in Fig. 2a–d that doesn’t involve the coupling parameter w i.e. the case when the particle can not hop vertically. We denote total bulk current from these four configurations as

$$\begin{aligned} J_1 = J_a + J_b + J_c + J_d, \end{aligned}$$
(A.1)

where \(J_a\), \(J_{b}\), \(J_c\), and \(J_{d}\) are particle currents corresponding to configuration (a), (b), (c), and (d), respectively and are given as

$$\begin{aligned} J_{a}= & {} V_3(V_0 + V_2)^3, \end{aligned}$$
(A.2)
$$\begin{aligned} J_{b}= & {} qV_3(V_1+V_3)(V_0+V_2)^2, \end{aligned}$$
(A.3)
$$\begin{aligned} J_c= & {} rV_3(V_1+V_3)(V_0+V_2)^2, \end{aligned}$$
(A.4)
$$\begin{aligned} \hbox {and} \quad J_d= & {} V_3(V_0+V_2)(V_1+V_3)^2, \end{aligned}$$
(A.5)

thus implying,

$$\begin{aligned} J_1 = V_3(1 - \rho )[(1-\rho )^2 + (q+r)\rho (1-\rho ) + \rho ^2]. \end{aligned}$$
(A.6)

Here \(\rho \) = \(V_1 + V_3\) denotes the particle bulk density. Similarly particle bulk current for the configurations in Fig. 2e–h which involves the role of parameter w i.e. when lane switching is possible, can be computed as

$$\begin{aligned} J_{e}= & {} (1-w)V_1(V_0 + V_2)^3, \end{aligned}$$
(A.7)
$$\begin{aligned} J_{f}= & {} q(1-w)V_1(V_1+V_3)(V_0+V_2)^2, \end{aligned}$$
(A.8)
$$\begin{aligned} J_g= & {} r(1-w)V_1(V_1+V_3)(V_0+V_2)^2, \end{aligned}$$
(A.9)
$$\begin{aligned} \hbox {and} \quad J_h= & {} (1-w)V_1(V_0+V_2)(V_1+V_3)^2, \end{aligned}$$
(A.10)

where \(J_e\), \(J_{f}\), \(J_g\), and \(J_{h}\) denote particle currents corresponding to configuration (e), (f), (g), and (h), respectively. The total bulk current for the above four configurations is expressed as

$$\begin{aligned} J_2= & {} J_e + J_f +J_g +J_h = (1-w)V_1(1 - \rho )[(1-\rho )^2 \nonumber \\&+\;(q+r)\rho (1-\rho ) + \rho ^2]. \end{aligned}$$
(A.11)

The overall bulk current per channel is

$$\begin{aligned} J_{bulk}^{VCMF}= & {} J_1 + J_2 =(V_3 + (1-w)V_1)(1-\rho )[(1-\rho )^2\nonumber \\&+\;(q+r)\rho (1-\rho ) + \rho ^2]. \end{aligned}$$
(A.12)

For any value of \(\rho \) between zero and one, the rate of formation of particle cluster, \(q = \eta ^{\theta }\), approaches infinity for very large attractive interactions (\(\eta \gg 1)\) and \(\theta > 0\). This causes bulk current to increase without any limit contradicting to the physical scenario of depletion of particle current under large attractive interactions. Similarly, the rate of breaking from a cluster, \(r = \eta ^{(\theta - 1)} \), tends to infinity for \(\eta \rightarrow 0 \) and \(\theta < 1\), for any \(\rho \in (0,1)\).

Appendix B: Monte Carlo simulations

Due to approximate nature of our method in calculating the effect of interactions and correlations, we validate the results obtained from the given approximate theoretical method with extensive Monte Carlo (MC) simulations. Random-Sequential update rules are adopted. For a single Monte Carlo step, first a lattice is randomly chosen with equal probability. To avoid any finite-size and boundary effects both lattices are considered to be of size N = 1000 unless otherwise mentioned. The results have been verified by taking large lattice size of \(N = 5000\). The simulation starts from a random initial distribution of particles on both the lattices and system evolved for \(10^{9}\)\(10^{10}\) time steps to ensure the steady state condition. To compute density and particle current at steady state, an average of the last \(80\%\) of the steps has been taken. In constructing phase diagrams, density profiles are compared with a precision of 0.01 and for calculating phase boundaries, error estimated in comparing currents is less than \(1\%\). Our predicted theoretical results fit well with the simulation results.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Midha, T., Gupta, A.K. Role of Interactions and Correlations on Collective Dynamics of Molecular Motors Along Parallel Filaments. J Stat Phys 169, 824–845 (2017). https://doi.org/10.1007/s10955-017-1894-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-017-1894-8

Keywords

Navigation