Skip to main content
Log in

On Blow-up Profile of Ground States of Boson Stars with External Potential

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study minimizers of the pseudo-relativistic Hartree functional \({\mathcal {E}}_{a}(u):=\Vert (-\varDelta +m^{2})^{1/4}u\Vert _{L^{2}}^{2}+\int _{{\mathbb {R}}^{3}}V(x)|u(x)|^{2}\mathrm{d}x-\frac{a}{2}\int _{{\mathbb {R}}^{3}}(\left| \cdot \right| ^{-1}\star |u|^{2})(x)|u(x)|^{2}\mathrm{d}x\) under the mass constraint \(\int _{{\mathbb {R}}^3}|u(x)|^2\mathrm{d}x=1\). Here \(m>0\) is the mass of particles and \(V\ge 0\) is an external potential. We prove that minimizers exist if and only if a satisfies \(0\le a<a^{*}\), and there is no minimizer if \(a\ge a^*\), where \(a^*\) is called the Chandrasekhar limit. When a approaches \(a^*\) from below, the blow-up behavior of minimizers is derived under some general external potentials V. Here we consider three cases of V: trapping potential, i.e. \(V\in L_{\mathrm{loc}}^{\infty }({\mathbb {R}}^3)\) satisfies \(\lim _{|x|\rightarrow \infty }V(x)=\infty \); periodic potential, i.e. \(V\in C({\mathbb {R}}^3)\) satisfies \(V(x+z)=V(x)\) for all \(z\in \mathbb {Z}^3\); and ring-shaped potential, e.g. \( V(x)=||x|-1|^p\) for some \(p>0\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R., Fournier, J.: Sobolev Spaces. Pure and Applied Mathematics, 2nd edn. Academic Press, Amsterdam (2003)

    MATH  Google Scholar 

  2. Bellazzini, J., Frank, R.L., Visciglia, N.: Maximizers for Gagliardo–Nirenberg inequalities and related non-local problems. Math. Ann. 360, 653–673 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brezis, H., Lieb, E.H.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88, 486–490 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  4. Frank, R.L., Lenzmann, E.: On ground states for the \(L^{2}\)-critical boson star equation (2009). arXiv:0910.2721

  5. Fröhlich, J., Jonsson, B.L., Lenzmann, E.: Boson stars as solitary waves. Commun. Math. Phys. 274(1), 1–30 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Guo, Y.J., Seiringer, R.: On the mass concentration for Bose–Einstein condensates with attractive interactions. Lett. Math. Phys. 104, 141–156 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Guo, Y.J., Zeng, X.: Ground states of pseudo-relativistic boson stars under the critical stellar mass. Ann. l’Inst. Henri Poincaré (C) (2017). doi:10.1016/j.anihpc.2017.04.001

  8. Guo, Y.J., Zeng, X., Zhou, H.S.: Energy estimates and symmetry breaking in attractive Bose–Einstein condensates with ring-shaped potentials. Ann. l’Inst. Henri Poincaré (C) Anal. Non Linéaire 33(3), 809–828 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Lenzmann, E.: Well-posedness for semi-relativistic Hartree equations of critical type. Math. Phys. Anal. Geom. 10(1), 43–64 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lenzmann, E., Lewin, M.: Minimizers for the Hartree–Fock–Bogoliubov theory of neutron stars and white dwarfs. Duke Math. J. 152(2), 257–315 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lenzmann, E., Lewin, M.: On singularity formation for the \(L^{2}\)-critical Boson star equation. Nonlinearity 24(12), 3515–3540 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Lewin, M., Nam, P.T., Rougerie, N.: Derivation of Hartree’s theory for generic mean-field Bose gases. Adv. Math. 254, 570–621 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lieb, E.H., Loss, M.: Analysis. Graduate Studies in Mathematics, vol. 14, 2nd edn. American Mathematical Society, Providence, RI (2001)

    MATH  Google Scholar 

  14. Lieb, E.H., Yau, H.T.: The Chandrasekhar theory of stellar collapse as the limit of quantum mechanics. Commun. Math. Phys. 112(1), 147–174 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Lieb, E.H., Yau, H.T.: The stability and instability of relativistic matter. Commun. Math. Phys. 118(2), 177–213 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Lions, P.L.: Solutions of Hartree–Fock equations for Coulomb systems. Commun. Math. Phys. 109(1), 33–97 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Lions, P.L.: The concentration-compactness method in the calculus of variations. the locally compact case. Ann. l’Inst. Henri Poincaré (C) Anal. Non Linéaire, Part 1 1(2), 109–145 (1984)

    Article  ADS  MATH  Google Scholar 

  18. Nguyen, D.T.: Blow-up profile of ground states for the critical boson star (2017). arXiv:1703.10324v1

  19. Qingxuan, Q., Dun, Z.: Existence and mass concentration of 2D attractive Bose–Einstein condensates with periodic potentials. J. Differ. Equ. 262(3), 2684–2704 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Yang, J., Yang, J.: Existence and mass concentration of pseudo-relativistic Hartree equation. J. Math. Phys. (2017). doi:10.1063/1.4996576

Download references

Acknowledgements

The author is very grateful to the referee for many useful suggestions which improve significantly the representation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinh-Thi Nguyen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, DT. On Blow-up Profile of Ground States of Boson Stars with External Potential. J Stat Phys 169, 395–422 (2017). https://doi.org/10.1007/s10955-017-1872-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-017-1872-1

Keywords

Navigation