Skip to main content

Advertisement

Log in

Irreversible Brownian Heat Engine

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We model a Brownian heat engine as a Brownian particle that hops in a periodic ratchet potential where the ratchet potential is coupled with a linearly decreasing background temperature. We show that the efficiency of such Brownian heat engine approaches the efficiency of endoreversible engine \(\eta =1-\sqrt{{T_{c}/T_{h}}}\) [23]. On the other hand, the maximum power efficiency of the engine approaches \(\eta ^{MAX}=1-({T_{c}/T_{h}})^{1\over 4}\). It is shown that the optimized efficiency always lies between the efficiency at quasistatic limit and the efficiency at maximum power while the efficiency at maximum power is always less than the optimized efficiency since the fast motion of the particle comes at the expense of the energy cost. If the heat exchange at the boundary of the heat baths is included, we show that such a Brownian heat engine has a higher performance when acting as a refrigerator than when operating as a device subjected to a piecewise constant temperature. The role of time on the performance of the motor is also explored via numerical simulations. Our numerical results depict that the time t and the external load dictate the direction of the particle velocity. Moreover, the performance of the heat engine improves with time. At large t (steady state), the velocity, the efficiency and the coefficient of performance of the refrigerator attain their maximum value. Furthermore, we study the effect of temperature by considering a viscous friction that decreases exponentially as the background temperature increases. Our result depicts that the Brownian particle exhibits a fast unidirectional motion when the viscous friction is temperature dependent than that of constant viscous friction. Moreover, the efficiency of this motor is considerably enhanced when the viscous friction is temperature dependent. On the hand, the motor exhibits a higher performance of the refrigerator when the viscous friction is taken to be constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Hänggi, P., Marchesoni, F., Nori, F.: Brownian motors. Ann. Phys. 14, 51 (2005). (Leipzig)

    Article  MathSciNet  MATH  Google Scholar 

  2. Hänggi, P., Marchesoni, F.: Artificial Brownian motors: Controlling transport on the nanoscale. Rev. Mod. Phys. 81, 387 (2009)

    Article  ADS  Google Scholar 

  3. Hondou, T., Sekimoto, k: Stochastic energetics. Phys. Rev. E 62, 6021 (2000)

    Article  ADS  Google Scholar 

  4. Marin, A.G., Sancho, J.M.: Tight coupling in thermal Brownian motors. Phys. Rev. E 74, 062102 (2006)

    Article  ADS  Google Scholar 

  5. Li, N., Zhan, F., Hänggi, P., Li, B.: Shuttling heat across one-dimensional homogenous nonlinear lattices with a Brownian heat motor. Phys. Rev. E 80, 011125 (2009)

    Article  ADS  Google Scholar 

  6. Li, N., Hänggi, P., Li, B.: Ratcheting heat flux against a thermal bias. Europhys. Lett. 84, 40009 (2008)

    Article  ADS  Google Scholar 

  7. Zhan, F., Li, N., Kohler, S., Hänggi, P.: Molecular wires acting as quantum heat ratchets. Phys. Rev. E 80, 061115 (2009)

    Article  ADS  Google Scholar 

  8. Büttiker, M.: Transport as a consequence of state-dependent diffusion. Z. Phys. B 68, 161 (1987)

    Article  ADS  Google Scholar 

  9. van Kampen, N.G.: Relative stability in nonuniform temperature. IBM J. Res. Dev. 32, 107 (1988)

    Article  Google Scholar 

  10. Landauer, R.: Motion out of noisy states. J. Stat. Phys. 53, 233 (1988)

    Article  ADS  Google Scholar 

  11. Landauer, R.: Inadequacy of entropy and entropy derivatives in characterizing the steady state. Phys. Rev. A 12, 636 (1975)

    Article  ADS  Google Scholar 

  12. Landauer, R.: Stability and relative stability in non-linear systems. Helv. Phys. Acta 56, 847 (1983)

    Google Scholar 

  13. Reimann, P., Bartussek, R., Häussler, R., Hänggi, P.: Brownian motors driven by temperature oscillations. Phys. Lett. A 215, 26 (1996)

    Article  ADS  Google Scholar 

  14. Asfaw, M., Bekele, M.: Current, maximum power and optimized efficiency of a Brownian heat engine. Eur. Phys. J. B 38, 457 (2004)

    Article  ADS  Google Scholar 

  15. Asfaw, M., Bekele, M.: Energetics of a simple microscopic heat engine. Phys. Rev. E 72, 056109 (2005)

    Article  ADS  Google Scholar 

  16. Asfaw, M., Bekele, M.: Exploring the operation of a tiny heat engine. Phys. A 384, 346 (2007)

    Article  Google Scholar 

  17. Matsuo, M., Sasa, S.: Stochastic energetics of non-uniform temperature systems. Phys. A 276, 188 (1999)

    Article  Google Scholar 

  18. Derènyi, I., Astumian, R.D.: Efficiency of Brownian heat engines. Phys. Rev. E 59, R6219 (1999)

    Article  ADS  Google Scholar 

  19. Derènyi, I., Bier, M., Astumian, R.D.: Generalized efficiency and its application to microscopic engines. Phys. Rev. Lett. 83, 903 (1999)

    Article  ADS  Google Scholar 

  20. Sancho, J.M., Miguel, M.S., Dürr, D.: Adiabatic elimination for systems of Brownian particles with nonconstant damping coefficients. J. Stat. Phys. 28, 291 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Ai, B.Q., Xie, H.Z., Wen, D.H., Liu, X.M., Liu, L.G.: Heat flow and efficiency in a microscopic engine. Eur. Phys. J. B 48, 101 (2005)

    Article  ADS  Google Scholar 

  22. Asfaw, M.: Effect of thermal inhomogeneity on the performance of a Brownian heat engine. Eur. Phys. J. B 86, 189 (2013)

    Article  ADS  Google Scholar 

  23. Curzon, F.L., Ahlborn, B.: Efficiency of a Carnot engine at maximum power output. Am. J. Phys. 43, 22 (1975)

    Article  ADS  Google Scholar 

  24. Asfaw, M.: Exact analytical thermodynamic expressions for a Brownian heat engine. Phys. Rev. E 89, 012143 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  25. Asfaw, M., Duki, S.F.: The effect of temperature dependence of viscosity on a Brownian heat engine. Eur. Phys. J. B 88, 322 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  26. Benjamin, R., Kawai, R.: Inertial effects in Bttiker-Landauer motor and refrigerator at the overdamped limit. Phys. Rev. E 77, 051132 (2008)

    Article  ADS  Google Scholar 

  27. Benjamin, R.: Stochastic energetics of a Brownian motor and refrigerator driven by non-uniform temperature. Int. J. Mod. Phys. B 28, 1450055 (2014)

    Article  ADS  Google Scholar 

  28. Reineck, P.Christoph, Wienken, J., Braun, D.: Thermophoresis of single stranded DNA. Electrophoresis 31, 279 (2010)

    Article  Google Scholar 

  29. Reynolds, O.: On the theory of lubrication and Its application to Mr. Beauchamp tower’s experiments, including an experimental determination of the viscosity of Olive Oil. Philos. Trans. R. Soc. Lond. 177, 157 (1886)

    Article  MATH  Google Scholar 

  30. Sekimoto, K.: Kinetic characterization of heat bath and the energetics of thermal ratchet models. J. Phys. Soc. Jpn. 66, 1234 (1997)

  31. Sekimoto, K.: Langevin equation and thermodynamics. Prog. Theor. Phys. Suppl. 130, 17 (1998)

    Article  ADS  Google Scholar 

  32. Matsuo, M., Sasa, Shin-ichi: Stochastic energetics of non-uniform temperature systems. Phys. A 276, 188 (2000)

    Article  Google Scholar 

  33. Esposito, M., Lindenberg, k, Van den Broeck, C.: Universality of efficiency at maximum power. Phys. Rev. Lett. 102, 130602 (2009)

    Article  ADS  Google Scholar 

  34. Sheng, S., Tu, Z.C.: Constitutive relation for nonlinear response and universality of efficiency at maximum power for tight-coupling heat engines. Phys. Rev. E 91, 022136 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I would like to thank Mulu Zebene for her constant encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mesfin Asfaw Taye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taye, M.A. Irreversible Brownian Heat Engine. J Stat Phys 169, 423–440 (2017). https://doi.org/10.1007/s10955-017-1869-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-017-1869-9

Keywords

Navigation