Skip to main content
Log in

Quantum Limits on the Entropy of Bandlimited Radiation

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Physical limits on the amount of information carried by bandlimited waveforms radiated in one and three dimensions are considered. It is shown that the entropy of radiation can achieve the Bekenstein bound using a “burst” of energy, whose density vanishes as the radiating system expands. In comparison, black body radiation of infinite bandwidth achieves the same entropy scaling, that is proportional to the volume of the space, but requires an energy density that remains constant as the system expands. Rather than following the standard statistical physics approach of counting the number of eigenstates of the Hamiltonian of the quantum wave field, our derivation first considers an optimal subspace approximation, and then determines the number of bits that are required to represent any waveform in the space spanned by this representation with a minimum quantized energy error. This favors a geometric interpretation where the complexity of state counting is replaced by the one of determining the minimum cardinality covering of the signal space by high-dimensional balls, or boxes, whose size is lower bounded by quantum constraints. All derivations are given for both deterministic and stochastic settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bekenstein, J.D.: Universal upper bound on the entropy-to-energy ratio for bounded systems. Phys. Rev. D 23(2), 287–298 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  2. Bekenstein, J.D.: Entropy content and information flow in systems with limited energy. Phys. Rev. D 30(8), 1669–1679 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  3. Bekenstein, J.D.: Communication and energy. Phys. Rev. A 37(9), 3437–3449 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  4. Bekenstein, J.D., Schiffer, M.: Quantum limitations on the storage and transmission of information. Int. J. Mod. Phys. C 1(4), 355–422 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Schiffer, M.: Quantum limit for information transmission. Phys. Rev. A 43(10), 5337–5343 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  6. Bekenstein, J.D.: Energy cost of information transfer. Phys. Rev. Lett. 46(10), 623–626 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  7. Bremermann, H.J.: Quantum noise and information. In: LeCam, L.M., Neyman, J. (eds.). Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability. University of California Press, Berkeley (1967)

  8. Bremermann, H.J.: Minimum energy requirements of information transfer and computing. Int. J. Theor. Phys. 21(3–4), 203–217 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  9. Caves, C.M., Drummond, P.D.: Quantum limits on Bosonic communication rates. Rev. Mod. Phys. 66(2), 481–537 (1994)

    Article  ADS  Google Scholar 

  10. Lebedev, D.S., Levitin, L.B.: Information transmission by electromagnetic field. Inf. Control 9, 1–22 (1966)

    Article  Google Scholar 

  11. Bowen, J.: On the capacity of a noiseless photon channel. IEEE Trans. Inform. Theory 13(2), 230–236 (1967)

    Article  Google Scholar 

  12. Gordon, J.P.: Quantum effects in communication systems. Proc. IRE 50(9), 1898–1908 (1962)

    Article  Google Scholar 

  13. Stern, T.E.: Some quantum effects in information channels. IEEE Trans. Inform. Theory 6, 435–440 (1960)

    Article  MathSciNet  Google Scholar 

  14. Pendry, J.B.: Quantum limits to the flow of information and entropy. J. Phys. A Math. Gen. 16, 2161–2171 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  15. Yuen, H., Ozawa, M.: Ultimate information carrying limit of quantum systems. Phys. Rev. Lett. 70(4), 363–366 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Lachmann, M., Newman, M.E., Moore, C.: The physical limits of communication or why any sufficiently advanced technology is indistinguishable from noise. Am. J. Phys. 72(10), 1290–1293 (2004)

    Article  ADS  Google Scholar 

  17. Bucci, O., Franceschetti, G.: On the spatial bandwidth of scattered fields. IEEE Trans. Antennas Propag. 35(12), 1445–1455 (1987)

    Article  ADS  Google Scholar 

  18. Bucci, O., Franceschetti, G.: On the degrees of freedom of scattered fields. IEEE Trans. Antennas Propag. 37(7), 918–926 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Pinkus, A.: \(n\)-Widths in Approximation Theory. Springer, New York (1985)

    Book  MATH  Google Scholar 

  20. Franceschetti, M.: On Landau’s eigenvalue theorem and information cut-sets. IEEE Trans. Inform. Theory 61(9), 5042–5051 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lim, T.J., Franceschetti, M.: Information without rolling dice. IEEE Trans. Inform. Theory 63(3), 1349–1363 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  22. Merhav, N.: Statistical physics and information theory. Found. Trends Commun. Inform. Theory 6(1–2), 1–212 (2009)

    MATH  Google Scholar 

  23. Donoho, D.L.: Wald lecture I: counting bits with Shannon and Kolmogorov. Technical Report, Stanford University (2000)

  24. Bekenstein, J.D.: How does the entropy/information bound work? Found. Phys. 35, 1805–1823 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Bousso, R.: Bound states and the Bekenstein bound. arXiv:hep-th/0310148

  26. Casini, H.: Relative entropy and the Bekenstein bound. Class. Quantum Gravity 25(20), 205021 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Pesci, A.: A proof of the Bekenstein bound for any strength of gravity through holography. Class. Quantum Gravity 27(16), 165006 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Gallager, R.G.: Information Theory and Reliable Communication. Wiley, New York (1968)

    MATH  Google Scholar 

  29. Cover, T.M., Thomas, J.: Elements of Information Theory, 2nd edn. Wiley, New York (2006)

    MATH  Google Scholar 

  30. Landau, H.J., Widom, H.: The eigenvalue distribution of time and frequency limiting. J. Math. Anal. Appl. 77, 469–481 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  31. Landau, H.J.: On Szegö’s eigenvalue distribution theorem and non-Hermitian kernels. J. Anal. Math. 28, 335–357 (1975)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Franceschetti.

Appendix

Appendix

The computation of the entropy of a continuous random variable quantized at fixed resolution is standard [29]. Here, we adapt this computation to a quantized resolution that grows sub-linearly, as indicated in Fig. 2. Consider a positive random variable \({{\mathrm{\mathsf {A}}}}\) distributed according to a continuous density g(a). By continuity, for all k we let a(k) be a value such that

$$\begin{aligned} g[a(k)] (\sqrt{k+1}-\sqrt{k}) \sigma = \int _{\sqrt{k} \sigma }^{\sqrt{k+1} \sigma } g(a) da. \end{aligned}$$
(80)

The quantized random variable \({{\mathrm{\mathsf {A}}}}^{\sigma }\) is defined as

$$\begin{aligned} {{\mathrm{\mathsf {A}}}}^{\sigma } = a(k) \;\; \text{ if } \;\; \sqrt{k} \sigma \le {{\mathrm{\mathsf {A}}}}< \sqrt{k+1} \sigma . \end{aligned}$$
(81)

We compute the Shannon entropy

$$\begin{aligned} H_{{{\mathrm{\mathsf {A}}}}^\sigma }&= - \sum _{k=0}^{\infty } g[a(k)] (\sqrt{k+1}-\sqrt{k}) \sigma \log [ g(a(k)) (\sqrt{k+1}-\sqrt{k}) \sigma ] \nonumber \\&= - \sum _{k=0}^{\infty } g[a(k)] (\sqrt{k+1}-\sqrt{k}) \sigma \log [g(a(k)) (\sqrt{k+1}-\sqrt{k}) ] \nonumber \\&\quad - \sum _{k=0}^{\infty } g[a(k)] (\sqrt{k+1}-\sqrt{k}) \sigma \log \sigma \nonumber \\&= - \sum _{k=0}^{\infty } g[a(k)] (\sqrt{k+1}-\sqrt{k}) \sigma \log [g(a(k)) (\sqrt{k+1}-\sqrt{k})] \nonumber \\&\quad - \log \sigma \sum _{k=0}^{\infty } \int _{\sqrt{k} \sigma }^{\sqrt{k+1} \sigma } g(a) da \nonumber \\&= - \sum _{k=0}^{\infty } g[a(k)] (\sqrt{k+1}-\sqrt{k}) \sigma \log [g(a(k)) (\sqrt{k+1}-\sqrt{k})] - \log \sigma . \end{aligned}$$
(82)

For small values of \(\sigma \), the first term approaches a Riemann integral that coincides with the differential entropy of \(\mathsf {A}\), and we have

$$\begin{aligned} \lim _{\sigma \rightarrow 0} (H_{{{\mathrm{\mathsf {A}}}}^\sigma }+ \log \sigma ) = h_{{{\mathrm{\mathsf {A}}}}}. \end{aligned}$$
(83)

It now follows that by drawing \(N_0\) independent zero mean Gaussian random variables of variance P, the entropy of the quantized sequence is, for small values of \(\sigma \), approximated by

$$\begin{aligned} H&= N_0 H_{{{\mathrm{\mathsf {A}}}}^\sigma } \nonumber \\&= N_0 (h_{{{\mathrm{\mathsf {A}}}}} - \log \sigma ) \nonumber \\&= N_0 \log \left( \frac{\sqrt{2 \pi e P}}{\sigma } \right) . \end{aligned}$$
(84)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franceschetti, M. Quantum Limits on the Entropy of Bandlimited Radiation. J Stat Phys 169, 374–394 (2017). https://doi.org/10.1007/s10955-017-1867-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-017-1867-y

Keywords

Navigation