Skip to main content
Log in

Equilibration in the Kac Model Using the GTW Metric \(d_2\)

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We use the Fourier based Gabetta–Toscani–Wennberg metric \(d_2\) to study the rate of convergence to equilibrium for the Kac model in 1 dimension. We take the initial velocity distribution of the particles to be a Borel probability measure \(\mu \) on \(\mathbb {R}^n\) that is symmetric in all its variables, has mean \(\vec {0}\) and finite second moment. Let \(\mu _t(dv)\) denote the Kac-evolved distribution at time t, and let \(R_\mu \) be the angular average of \(\mu \). We give an upper bound to \(d_2(\mu _t, R_\mu )\) of the form \(\min \left\{ B e^{-\frac{4 \lambda _1}{n+3}t}, d_2(\mu ,R_\mu )\right\} ,\) where \(\lambda _1 = \frac{n+2}{2(n-1)}\) is the gap of the Kac model in \(L^2\) and B depends only on the second moment of \(\mu \). We also construct a family of Schwartz probability densities \(\{f_0^{(n)}: \mathbb {R}^n\rightarrow \mathbb {R}\}\) with finite second moments that shows practically no decrease in \(d_2(f_0(t), R_{f_0})\) for time at least \(\frac{1}{2\lambda }\) with \(\lambda \) the rate of the Kac operator. We also present a propagation of chaos result for the partially thermostated Kac model in Tossounian and Vaidyanathan (J Math Phys 56(8):083301, 2015).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bayer, D., Diaconis, P.: Trailing the dovetail shuffle to its lair. Ann. Appl. Probab. 2(2), 294–313 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bobylev, A.V., Cercignani, C.: On the rate of entropy production for the Boltzmann equation. J. Stat. Phys. 94, 3–4 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bonetto, F., Loss, M., Vaidyanathan, R.: The Kac model coupled to a thermostat. J. Stat. Phys. 156(4), 647–667 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bonetto, F., Loss, M., Tossounian, H., Vaidyanathan, R.: Uniform approximation of a Maxwellian thermostat by finite reservoirs. Commun. Math. Phys. 351(1), 311339 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Carlen, E.A., Carvalho, M.C., Loss, M.: Many-body aspects of approach to equilibrium. In: Journées Equations aux Dérivées Partielles (La Chapelle sur Erdre, 2000), pages Exp. No. XI, \(12\). Univ. Nantes, Nantes (2000)

  6. Carlen, E.A., Geronimo, J., Loss, M.: On the Markov sequence problem for Jacobi polynomials. Adv. Math. 226(4), 3426–3466 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Carlen, E.A., Lebowitz, J.L., Mouhot, C.: Exponential approach to, and properties of, a non-equilibrium steady state in a dilute gas. Braz. J. Probab. Stat. 29(2), 372–386 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Einav, A.: On Villani’s conjecture concerning entropy production for the Kac master equation. Kinet. Relat. Models 4(2), 479–497 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Evans, J.: Non-equilibrium steady states in Kac’s model coupled to a thermostat. J. Stat. Phys. 164(5), 1103–1121 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Gabetta, E., Toscani, G., Wennberg, B.: Metrics for probability distributions and the trend to equilibrium for solutions of the Boltzmann equation. J. Stat. Phys. 81(5–6), 901–934 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Janvresse, E.: Spectral gap for Kac’s model of Boltzmann equation. Ann. Probab. 29, 288–304 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kac, M.: Foundations of kinetic theory. In: Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954–1955, vol. III, pp. 171–197. University of California Press, Berkeley (1956)

  13. McKean Jr., H.P.: Speed of approach to equilibrium for Kacs caricature of a Maxwellian gas. Arch. Ration. Mech. Anal. 21, 343–367 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  14. Tossounian, H., Vaidyanathan, R.: Partially thermostated Kac model. J. Math. Phys. 56(8), 083301 (2015)

  15. Villani, C.: Cercignani’s conjecture is sometimes true and always almost true. Commun. Math. Phys. 234(3), 455–490 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I am grateful to Federico Bonetto and Michael Loss for fruitful discussions and thank Ranjini Vaidyanathan for helping me with Theorem 3. I was partially supported by the NSF Grant DMS-1301555. I also thank the anonymous referee for helpful feedback and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Tossounian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tossounian, H. Equilibration in the Kac Model Using the GTW Metric \(d_2\) . J Stat Phys 169, 168–186 (2017). https://doi.org/10.1007/s10955-017-1863-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-017-1863-2

Keywords

Navigation