Skip to main content
Log in

Inertial Manifold and Large Deviations Approach to Reduced PDE Dynamics

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In this paper a certain type of reaction–diffusion equation—similar to the Allen-Cahn equation—is the starting point for setting up a genuine thermodynamic reduction i.e. involving a finite number of parameters or collective variables of the initial system. We firstly operate a finite Lyapunov–Schmidt reduction of the cited reaction–diffusion equation when reformulated as a variational problem. In this way we gain a finite-dimensional ODE description of the initial system which preserves the gradient structure of the original one and that is exact for the static case and only approximate for the dynamic case. Our main concern is how to deal with this approximate reduced description of the initial PDE. To start with, we note that our approximate reduced ODE is similar to the approximate inertial manifold introduced by Temam and coworkers for Navier–Stokes equations. As a second approach, we take into account the uncertainty (loss of information) introduced with the above mentioned approximate reduction by considering the stochastic version of the ODE. We study this reduced stochastic system using classical tools from large deviations, viscosity solutions and weak KAM Hamilton–Jacobi theory. In the last part we suggest a possible use of a result of our approach in the comprehensive treatment non equilibrium thermodynamics given by Macroscopic Fluctuation Theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. E.g. \(\mathcal {H}\) is the Sobolev space \(W^{2,2}_0(\Omega ;\mathbb {R})\).

  2. By applying twice (2.34), we write \(\left| \Delta ^1 \chi \right| ^2 \ge \Lambda \left| \Delta ^\frac{1}{2} \chi \right| ^2 \ge \Lambda ^2 \left| \Delta ^0 \chi \right| ^2\), from which it follows \( \left| \Delta \chi \right| \ge \Lambda \left| \chi \right| \).

  3. We recall that for the reduced equation the set of critical points is in a one-to-one correspondence with the equilibria of the original reaction–diffusion equation.

  4. Precisely, we consider the Fokker–Planck equation (3.2) with a factor \(\nu /2\) in front of the Laplacian.

  5. When considering lattice gas model, the above introduced continuity equation is the hydrodynamic limit equation for density \(\rho (x,t) \) which in turn is the limit of the empirical density \(\rho _N (z,t)\) of particles in a given point z on the lattice \(\Lambda \subset \mathbb {Z}^d\) with N particles. In the thermodynamic limit \(N \rightarrow \infty \) the empirical density \(\rho _N\) satisfies a large deviations principle, [21].

References

  1. Amann, H., Zehnder, E.: Nontrivial solutions for a class of nonresonance problems and applications to nonlinear differential equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 7, 539–603 (1980)

    MathSciNet  MATH  Google Scholar 

  2. Amann, H.: Saddle points and multiple solutions of differential equations. Math. Z. 169, 127–166 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arnold, V.I., Khesin, B.A.: Topological Methods in Hydrodynamics. Applied Mathematical Sciences, vol. 125. Springer, New York (1998)

    MATH  Google Scholar 

  4. Bardi, M., Capuzzo-Dolcetta, I.: Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations. Birkhäuser Boston Inc, Boston, MA (1997)

    Book  MATH  Google Scholar 

  5. Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Macroscopic Fluctuation Theory (2014). arXiv:1404.6466

  6. Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Towards a nonequilibrium thermodynamics: a self-contained macroscopic description of driven diffusive systems. J. Stat. Phys. 135(5–6), 857–872 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Fluctuations in stationary nonequilibrium states of irreversible processes. Phys. Rev. Lett. 87(4), 040601 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  8. Boldrighini, C., De Masi, A., Pellegrinotti, A., Presutti, E.: Collective phenomena in interacting particle systems. Stoch. Process. Appl. 25, 137–152 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cardin, F., Lovison, A., Putti, M.: Implementation of an exact finite reduction scheme for steady-state reaction-diffusion equations. Int. J. Numer. Methods Eng. 69(9), 1804–1818 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cardin, F., Tebaldi, C.: Finite reductions for dissipative systems and viscous fluid-dynamic models on \(\mathbb{T}^2\). J. Math. Anal. Appl. 345, 213–222 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cardin, F., Lovison, A.: Finite mechanical proxies for a class of reducible continuum systems. Netw. Heterog. Media 9, 417–432 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cardin, F., Masci, L.: A Morse Index invariant reduction of non equilibrium thermodynamics. In: Rendiconti Lincei, Matematica e Applicazioni, vol. IV (2017)

  13. Conley, C.: Isolated Invariant Sets and The Morse Index. In: Regional Conferences Series in Mathematics. Conference Board for the Mathematical Sciences, vol. 38 (1976)

  14. Davini, A., Siconolfi, A.: A generalized dynamical approach to the large time behavior of solutions of Hamilton-Jacobi equations. SIAM J. Math. Anal. 38(2), 478–502 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fathi, A.: Weak KAM Theorem in Lagrangian Dynamics. Cambridge Studies in Advanced Mathematics, vol. 88 (2016)

  16. Foias, C., Manley, O., Temam, R.: Attractors for the Bénard problem: existence and Physical bounds on their fractal dimension. Nonlinear Anal. Theory Model. Appl. (1987)

  17. Foias, C., Manley, O., Temam, R.: Modelling of the interaction of small and large eddies in two dimensional turbulent flows. RAIRO 22, 93–118 (1988)

    MathSciNet  MATH  Google Scholar 

  18. Freidlin, M.I., Ventzell, A.D.: Random Perturbations of Dynamical Systems. Springer, Berlin (1998)

    Book  Google Scholar 

  19. Jona-Lasinio, G.: From fluctuations in hydrodynamics to nonequilibrium thermodynamics. Prog. Theor. Phys. Suppl. 184, 262–275 (2010)

    Article  ADS  MATH  Google Scholar 

  20. Kramers, H.A.: Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7(4), 284–304 (1940)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Kipnis, C., Landim, C.: Scaling Limits of Interacting Particle Systems. Grundlehren der mathematischen Wissenschaften, vol. 320. Springer, Berlin (1999)

  22. Maragliano, L., Fischer, A., Vanden-Eijnden, E., Ciccotti, G.: String method in collective variables: minimum free energy paths and isocommittor surfaces. J. Chem. Phys. 125, 24106 (2006)

    Article  Google Scholar 

  23. Marion, M.: Approximate inertial manifolds for reaction-diffusion equations in high space dimension. J. Dyn. Differ. Equ. 1, 245–267 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  24. Moro, G.J.: Kinetic equations for site populations from the Fokker-Planck equation. J. Chem. Phys. 103, 7514–7528 (1995)

    Article  ADS  Google Scholar 

  25. Moro, G.J., Cardin, F.: Variational layer expansion for kinetic processes. Phys. Rev. E 55(5), 4918–4934 (1997)

    Article  ADS  Google Scholar 

  26. Müller, S., Schlömerkemper, A.: Discrete-to-continuum limit of magnetic forces. C. R. Math. 335, 393–398 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  27. Temam, R.: Inertial manifolds. Math. Intell. 12(4), 68–74 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  28. Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics. Applied Mathematical Sciences, vol. 68, 2nd edn. Springer, New York (1997)

  29. Touchette, H.: The large deviation approach to statistical mechanics. Phys. Rep. 478, 1–69 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  30. Varadhan, S.R.: Large Deviations and Applications. SIAM, Philadelphia (1984)

    Book  MATH  Google Scholar 

  31. Viterbo, C.: Recent progress in periodic orbits of autonomous Hamiltonian systems and applications to symplectic geometry. In: Nonlinear Functional Analysis (Newark, NJ, 1987). Lecture Notes in Pure and Applied Mathematics, vol. 121, pp. 227–250. Dekker, New York (1990)

  32. Witten, E.: Supersymmetry and Morse theory. J. Differ. Geom. 17(4), 661–692 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  33. Yukhnovskiĭ, I.R.: Phase Transitions of the Second Order. World Scientific, Singapore (1987)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Favretti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cardin, F., Favretti, M. & Lovison, A. Inertial Manifold and Large Deviations Approach to Reduced PDE Dynamics. J Stat Phys 168, 1000–1015 (2017). https://doi.org/10.1007/s10955-017-1845-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-017-1845-4

Keywords

Mathematics Subject Classification

Navigation