Skip to main content
Log in

Heuristic Relative Entropy Principles with Complex Measures: Large-Degree Asymptotics of a Family of Multi-variate Normal Random Polynomials

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Let \(z\in \mathbb {C}\), let \(\sigma ^2>0\) be a variance, and for \(N\in \mathbb {N}\) define the integrals

$$\begin{aligned} E_N^{}(z;\sigma ) := \left\{ \begin{array}{ll} {\frac{1}{\sigma }} \!\!\!\displaystyle \int _{\mathbb {R}}\! (x^2+z^2) \frac{e^{-\frac{1}{2\sigma ^2} x^2}}{\sqrt{2\pi }}dx&{}\quad \text{ if }\, N=1,\\ {\frac{1}{\sigma }} \!\!\!\displaystyle \int _{\mathbb {R}^N}\! \prod \prod \limits _{1\le k<l\le N}\!\! e^{-\frac{1}{2N}(1-\sigma ^{-2}) (x_k-x_l)^2} \prod _{1\le n\le N}\!\!\!\!(x_n^2+z^2) \frac{e^{-\frac{1}{2\sigma ^2} x_n^2}}{\sqrt{2\pi }}dx_n &{}\quad \text{ if }\, N>1. \end{array}\right. \!\!\! \end{aligned}$$

These are expected values of the polynomials \(P_N^{}(z)=\prod _{1\le n\le N}(X_n^2+z^2)\) whose 2N zeros \(\{\pm i X_k\}^{}_{k=1,\ldots ,N}\) are generated by N identically distributed multi-variate mean-zero normal random variables \(\{X_k\}^{N}_{k=1}\) with co-variance \(\mathrm{{Cov}}_N^{}(X_k,X_l)=(1+\frac{\sigma ^2-1}{N})\delta _{k,l}+\frac{\sigma ^2-1}{N}(1-\delta _{k,l})\). The \(E_N^{}(z;\sigma )\) are polynomials in \(z^2\), explicitly computable for arbitrary N, yet a list of the first three \(E_N^{}(z;\sigma )\) shows that the expressions become unwieldy already for moderate N—unless \(\sigma = 1\), in which case \(E_N^{}(z;1) = (1+z^2)^N\) for all \(z\in \mathbb {C}\) and \(N\in \mathbb {N}\). (Incidentally, commonly available computer algebra evaluates the integrals \(E_N^{}(z;\sigma )\) only for N up to a dozen, due to memory constraints). Asymptotic evaluations are needed for the large-N regime. For general complex z these have traditionally been limited to analytic expansion techniques; several rigorous results are proved for complex z near 0. Yet if \(z\in \mathbb {R}\) one can also compute this “infinite-degree” limit with the help of the familiar relative entropy principle for probability measures; a rigorous proof of this fact is supplied. Computer algebra-generated evidence is presented in support of a conjecture that a generalization of the relative entropy principle to signed or complex measures governs the \(N\rightarrow \infty \) asymptotics of the regime \(iz\in \mathbb {R}\). Potential generalizations, in particular to point vortex ensembles and the prescribed Gauss curvature problem, and to random matrix ensembles, are emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Kirchhoff’s Hamilton function generates point vortex motion in \(\mathbb {R}^2\) without boundaries or externally produced stream functions. The a-priori measure \(\mu _0\) adds an external stream function \(\sum _k\ln f(\mathbf {s}_k)\) to \(-{\scriptstyle {\frac{\beta }{N}}}H^{(N)}\) to prevent the vortices from escaping to spatial \(\infty \).

  2. Louis Nirenberg originally posed the problem for the prescribed Gauss curvature equation on the sphere \(\mathbb {S}^2\), which is much harder to answer due to some topological obstructions (see, e.g., [1, 12, 15]). One such obstruction translates into the interesting requirement that the (rescaled) reciprocal Onsager temperature \(\beta =-8\pi \), but this is exactly the borderline value where the canonical ensemble becomes a singular measure and therefore fails to supply partial answers to Nirenberg’s question. However, as explained in [17, 20], the microcanonical point vortex ensemble [25] will produce solutions to the prescribed Gauss curvature equation on \(\mathbb {S}^2\) whenever some exist, although only maximum entropy solutions can be produced.

  3. Personal communication from A.C. to M.K.; ca. 2000.

  4. Probabilists prefer the opposite sign convention for the relative entropy; cf. [9].

  5. Such a strategy may not be futile, for similar integrals occur in the theory of random matrices and have been evaluated exactly for all N; see [10, 22], and see Sect. 8. However, the N-scaling of the Onsager temperature in our setting has been an obstacle so far.

  6. Estimates in the opposite direction follow from \((x_k-x_l)^2\ge 0\) with “\(=\)” iff \(x_k=x_l\), thus

    $$\begin{aligned} \sigma E_N^{}(z;\sigma )\; \left\{ \begin{array}{lll} &{}> \sigma ^{N}(\sigma ^2+z^2)^N \quad \text{ if }\quad \sigma<1\\ &{} < \sigma ^{N}(\sigma ^2+z^2)^N \quad \text{ if }\quad \sigma >1\\ \end{array} \right. . \end{aligned}$$
    (62)
  7. Here: directional derivatives in the direction of any \(\psi =\psi _++\psi _-\), with \(\psi _\pm \in C^\infty \) compactly supported inside the support of the positive/negative part of the a-priori measure, respectively, and with \(\psi \) integrating to zero to preserve the normalization of \(\dot{\varsigma }^{(N)}\).

  8. Incidentally, our study shows that the multivariate normal random variables with \(\sigma \ne 1\) will not be amongst the laws asked for in Q1.

References

  1. Chang, S.Y.A., Yang, P.: Prescribing Gaussian curvature on \({\mathbb{S}}^2\). Acta Math. 159, 215–259 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  2. Conrey, B.: The Riemann Hypothesis, Notices of the AMS, pp. 341–353 (2003)

  3. Caglioti, E., Lions, P.L., Marchioro, C., Pulvirenti, M.: A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description. Commun. Math. Phys. 143, 501–525 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Caglioti, E., Lions, P.L., Marchioro, C., Pulvirenti, M.: A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description. II. Commun. Math. Phys. 174, 229–260 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Chanillo, S., Kiessling, M.K.-H.: Surfaces with prescribed Gauss curvature. Duke Math. J. 105, 309–353 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dirac, P.A.M.: Bakerian lecture. The physical interpretation of quantum mechanics. Proc. R. Soc. A 180, 1–40 (1942)

    Article  ADS  MATH  Google Scholar 

  7. Dumitriu, I., Edelman, A.: Matrix models for \(\beta \) ensembles. J. Math. Phys. 43, 5830–5847 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Edwards, H.M.: Riemann’s Zeta Function. Dover, New York (1974)

    MATH  Google Scholar 

  9. Ellis, R.S.: Entropy, Large Deviations, and Statistical Mechanics. Springer, New York (1985)

    Book  MATH  Google Scholar 

  10. Forrester, P.J.: Log-Gases and Random Matrices. Princeton University Press, Princeton (2010)

    MATH  Google Scholar 

  11. Gibbs, J.W.: Elementary Principles of Statistical Mechanics. Scribner’s Sons, New York (1902)

    MATH  Google Scholar 

  12. Han, Z.C.: Prescribing Gauss curvature on \({\mathbb{S}}^2\). Duke Math. J. 61, 679–703 (1990)

    Article  MathSciNet  Google Scholar 

  13. Hewitt, E., Savage, L.J.: Symmetric measures on Cartesian products. Trans. Am. Math. Soc. 80, 470–501 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  14. Iwaniec, H.: Lectures on the Riemann Zeta Function. AMS, Providence (2014)

    Book  MATH  Google Scholar 

  15. Kazdan, J., Warner, F.: Curvature functions for compact 2-manifolds. Ann. Math. 99, 14–47 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kiessling, M.K.-H.: Statistical mechanics of classical particles with logarithmic interactions. Commun. Pure Appl. Math. 46, 27–56 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kiessling, M.K.-H.: Statistical mechanics approach to some problems in conformal geometry. Physica A 279, 353–368 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  18. Kiessling, M.K.-H., Lebowitz, J.L.: The micro-canonical point vortex ensemble: beyond equivalence. Lett. Math. Phys. 42, 43–58 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kiessling, M.K.-H., Spohn, H.: A note on the eigenvalue density of random matrices. Commun. Math. Phys. 199, 683–695 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Kiessling, M.K.-H., Wang, Y.: Onsager’s ensemble for point vortices with random circulations on the sphere. J. Stat. Phys. 148, 896–932 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Maalaoui, A.: Prescribing the Q-curvature on the sphere with conical singularities. Discret. Contin. Dyn. Syst. 36, 6307–6330 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mehta, M.L.: Random Matrices, 2nd edn. Academic Press, New York (1991)

    MATH  Google Scholar 

  23. Messer, J., Spohn, H.: Statistical mechanics of the isothermal Lane-Emden equation. J. Stat. Phys. 29, 561–578 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  24. Mezard, M., Parisi, G., Virasoro, M.A.: Spin Glass Theory and Beyond. World Scientific, Singapore (1987)

    MATH  Google Scholar 

  25. Onsager, L.: Statistical hydrodynamics. Nuovo Cim. Suppl. 6, 279–287 (1949)

    Article  ADS  MathSciNet  Google Scholar 

  26. Robinson, D.W., Ruelle, D.: Mean entropy of states in classical statistical mechanics. Commun. Math. Phys. 5, 288–300 (1967)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Shamis, M., Zeitouni, O.: The Curie–Weiss Model with Complex Temperature: Phase Transitions. arXiv:1701.02375v1 (2017)

Download references

Acknowledgements

I am grateful to Alice Chang for her question about the connection between statistical mechanics of point vortices and Nirenberg’s problem with signed Gaussian curvature, which started this inquiry. I also thank Roger Nussbaum, Alex Kontorovich, and Shadi Tahvildar-Zadeh for patiently listening to my reports of progress which helped me obtaining greater clarity in this writeup. Finally I thank both referees for their constructive criticisms.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Karl-Heinz Kiessling.

Additional information

Dedicated to the memory of my mother, Elisabeth Kiessling, née Appeltrath.

Appendix A: Alternate Proof of Corollary 2.3

Appendix A: Alternate Proof of Corollary 2.3

Proof of Corollary 2.3

By the permutation symmetry in \(\{x_1,\ldots ,x_N\}\) of the pdf given by the integrand of (37), for the pertinent random variables \(\{X_1,\ldots ,X_N\}\) we have

$$\begin{aligned} N\mathrm{{Var}}_N\!\left[ X_1\right] = {\textstyle {\sum \limits _{k=1}^N}}\mathrm{{Var}}_N\!\left[ X_k\right] , \end{aligned}$$
(135)

and for these (as for any) mean-zero random variables \(\{X_1,\ldots ,X_N\}\), we have

$$\begin{aligned} {\textstyle {\sum \limits _{k=1}^N}}\mathrm{{Var}}_N\!\left[ X_k\right] = \mathrm{{Exp}}_N\left[ {\textstyle {\sum \limits _{k=1}^N}} X_k^2\right] . \end{aligned}$$
(136)

Under a Euclidean transformation (here: rotation) from \(\{x_1,\ldots ,x_N\}\) to \(\{y_1,\ldots ,y_N\}\),

$$\begin{aligned} \mathrm{{Exp}}_N\left[ {\textstyle {\sum \limits _{k=1}^N}} X_k^2\right] = \mathrm{{Exp}}_N\left[ {\textstyle {\sum \limits _{k=1}^N}} Y_k^2\right] . \end{aligned}$$
(137)

By the proof of Proposition 2.1,

$$\begin{aligned} \mathrm{{Exp}}_N\left[ {\textstyle {\sum \limits _{k=1}^N}} Y_k^2\right] = \mathrm{{Exp}}_N\left[ Y_1^2\right] + (N-1)\mathrm{{Exp}}_N\left[ Y_2^2\right] = \sigma ^2 + N-1. \end{aligned}$$
(138)

The proof is complete. \(\square \)

Remark 8.1

There is no unique rotation in \(\mathbb {R}^N\) which maps \(\{x_1,x_2,\ldots ,x_N\}\) into \(y_1:={\textstyle {\frac{1}{\sqrt{N}}}}\sum _{1\le k \le N} x_k\); even after stipulating that the \(x_1\) axis should be rotated into the \(y_1\) axis we are left to choose an arbitrary \(SO(N-1)\) rotation “about the \(y_1\)-axis” to fix the remaining \(N-1\) axes. Such a freedom may be useful to simplify the expected value integrals in the y coordinates, but we have not explored this here.

1.1 Appendix B: Alternate Proof of the Positivity of \(E_{2K}^{}(z;\sigma );\; K\in \mathbb {N}\), \(\sigma \ge 1\)

Proposition 8.2

Let \(K\in \mathbb {N}\). Then for \(\sigma \ge 1\) and \(z^2\in \mathbb {R}\) we have \(E_{2K}(z;\sigma )\ge 0\), with “\(=0\)” iff \(\sigma =1\) and \(z^2=-1\).

Proof of Proposition 8.2

We split the \(N=2K\) variables into two disjoint sets of size K, keeping the notation \(x_n^{}\) for \(n=1,\ldots ,K\) and renaming \(x_n^{}=:\tilde{x}_k^{}\) if \(n=K+k\) with \(k=1,\ldots ,K\). Note that

$$\begin{aligned} \sum \!\sum _{1\le k,l\le 2K} (x_k-x_l)^2 = \sum \!\sum _{1\le k,l\le K} (x_k-x_l)^2 + \sum \!\sum _{1\le k,l\le K} (\tilde{x}_k-\tilde{x}_l)^2 + 2 \sum \!\sum _{1\le k,l\le K} (x_k-\tilde{x}_l)^2,\qquad \end{aligned}$$
(139)

and further that

$$\begin{aligned} \sum \!\sum _{1\le k,l\le K} (x_k-\tilde{x}_l)^2 = K\!\!\sum _{1\le k\le K}\!\!x_k^2 + K\!\!\sum _{1\le l\le K}\!\!\tilde{x}_l^2 - 2\sum \!\sum _{1\le k,l\le K}x_k\tilde{x}_l. \end{aligned}$$
(140)

Again recalling that \((x_1^{},\ldots ,x_K^{})=:\vec {x}\), and defining

$$\begin{aligned} \displaystyle \prod \!\!\prod _{1\le k<l\le K}\! e^{-\frac{1}{4K}(1-\frac{1}{\sigma ^2}) (x_k-x_l)^2}\!\!\! \prod _{1\le n\le K}\!\!(z^2+ x_n^2)e^{- \frac{1}{4}(1+\frac{1}{\sigma ^2}) x_n^2} =: \Upsilon (\vec {x}) \end{aligned}$$
(141)

and

$$\begin{aligned} \displaystyle \prod \!\!\prod _{1\le k,l\le K}\! e^{\frac{1}{2K}(1-\frac{1}{\sigma ^2}) x_k\tilde{x}_l} =: \Omega (\vec {x},\vec {\tilde{x}}), \end{aligned}$$
(142)

we have, for \(K\in \mathbb {N}\),

$$\begin{aligned} \begin{array}{rl} E_{2K}^{}(z;\sigma )\! = &{} \!\! {\textstyle \frac{1}{\sigma {({2\pi }})^K}} \displaystyle \int _{\mathbb {R}^K}\!\! \int _{\mathbb {R}^K} \Upsilon (\vec {x}) \Omega (\vec {x},\vec {\tilde{x}}) \Upsilon (\vec {\tilde{x}}) d^{^K}\!\!x\,d^{^K}\!\!\tilde{x}\\ = &{} \!\! {\textstyle \frac{1}{\sigma {({2\pi }})^K}} \sum \limits _{j=0}^\infty \frac{1}{j!} \left( \frac{1}{2K}(1-\frac{1}{\sigma ^2})\right) ^j \displaystyle \int _{\mathbb {R}^K}\!\! \int _{\mathbb {R}^K} \Upsilon (\vec {x}) \Upsilon (\vec {\tilde{x}}) \Bigl (\,\textstyle \sum \!\sum \limits _{1\le k,l\le K}\!\!x_k\tilde{x}_l\Bigr )^j\!\! d^{^K}\!\!x\,d^{^K}\!\!\tilde{x}\!\!\!\!\!\\ = &{} \!\! {\textstyle \frac{1}{\sigma {({2\pi }})^K}} \sum \limits _{j=0}^\infty \frac{1}{j!} \left( \frac{1}{2K}(1-\frac{1}{\sigma ^2})\right) ^j \displaystyle \biggl (\int _{\mathbb {R}^K} \Upsilon (\vec {x}) \Bigl (\textstyle \sum \limits _{\; 1\le k\le K}\!\!x_k\Bigr )^j d^{^K}\!\!x\biggr )^2, \end{array}\qquad \end{aligned}$$
(143)

which, since \(\sigma \ge 1\), is manifestly \(\ge 0\). More precisely, r.h.s. (143) is estimated from below by the \(j=0\) contribution, evaluating to \(\frac{1}{\sigma }\Big [\sqrt{2\frac{\sigma ^2}{\sigma ^2+1} }(z^2 +2\frac{\sigma ^2}{\sigma ^2+1} )\Big ]^{2K}\ge 0\), with “\(=0\)” iff \(\sigma =1\) and \(z^2=-1\). When \(\sigma =1\), the \(j=0\) term is also the only contribution to r.h.s. (143). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiessling, M.KH. Heuristic Relative Entropy Principles with Complex Measures: Large-Degree Asymptotics of a Family of Multi-variate Normal Random Polynomials. J Stat Phys 169, 63–106 (2017). https://doi.org/10.1007/s10955-017-1843-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-017-1843-6

Keywords

Navigation