Skip to main content
Log in

On an Ordering-Dependent Generalization of the Tutte Polynomial

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A generalization of the Tutte polynomial involved in the evaluation of the moments of the integrated geometric Brownian in the Itô formalism is discussed. The new combinatorial invariant depends on the order in which the sequence of contraction–deletions have been performed on the graph. Thus, this work provides a motivation for studying an order-dependent Tutte polynomial in the context of stochastic differential equations. We show that in the limit of the control parameters encoding the ordering going to zero, the multivariate Tutte–Fortuin–Kasteleyn polynomial is recovered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The complete definition of Z(G) requires an extra parameter \(\kappa \) that is not useful for our discussion.

  2. The b.c. define the leaves in the abstract rooted tree of the contraction–deletion procedure with root G; the two first nodes in this tree represent G / e and \(G-e\). Then we insert an edge between G and G / e and \(G-e\) and so on. In this way, we define iteratively the set of contraction–deletions paths in G.

References

  1. Sokal, A.: The multivariate Tutte polynomial (alias Potts model) for graphs and matroids. In: Surveys in Combinatorics, London Mathematical Society, Lecture Note Series, vol. 327, pp. 173–226. Cambridge University Press, Cambridge (2005). arXiv:math/0503607

  2. Grimmet, G.: The Random-Cluster Model. Springer, Berlin (2006)

    Book  Google Scholar 

  3. Caravelli, F., Mansour, T., Sindoni, L., Severini, S.: On moments of the integrated exponential Brownian motion, Eur. Phys. J. Plus 131:245 (2016); Err. Eur. Phys. J. Plus 132:59 (2017)

  4. Gardiner, C.: Stochastic Methods. Springer, Berlin (2009)

    MATH  Google Scholar 

  5. Yor, M.: Exponential Functionals of Brownian Motion and Related Processes. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  6. Matsumoto, H., Yor, M.: Exponential functionals of Brownian motion, I: probability laws at fixed time. Probab. Surv. 2, 312–347 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Matsumoto, H., Yor, M.: Exponential functionals of Brownian motion, II: some related diffusion processes. Probab. Surv. 2, 348–384 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Yor, M.: On some exponential functionals of Brownian motion. Adv. Appl. Prob. 24, 509–531 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  9. Girsanov, I.V.: Theory Probab. Appl. 5(3), 285–301 (1960)

    Article  MathSciNet  Google Scholar 

  10. Caravelli, F., Sindoni, L., Caccioli, F., Ududec, C.: Optimal leverage trajectories with finite carrying capacity. Phys. Rev. E 94, 2 (2016)

    Article  Google Scholar 

  11. Tutte, W.T.: Graph Theory. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  12. Fortuin, C.M., Kasteleyn, P.W.: On the random-cluster model: I. Introduction and relation to other models. Physica 57, 536–564 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  13. Bollobás, B., Riordan, O.: A Tutte polynomial for coloured graphs, probability and computing. Combinatorics 8, 45–93 (1999)

    MathSciNet  MATH  Google Scholar 

  14. Chung, F.R.K., Graham, R.L.: On the cover polynomial of a digraph. J. Comb. Theory (B) 65, 273–290 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gordon, G., Traldi, L.: Polynomials for directed graphs. Congressus Numerantium 94 (1993); Addendum Congressus Numerantium 100:5–6 (1994). MR 1 382 300

  16. Gordon, G.: A Tutte polynomial for partially ordered sets. J. Comb. Theory (B) 59, 132–155 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gordon, G., Traldi, L.: Generalized activities and the Tutte polynomial. Discret. Math. 85, 167–176 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gordon, G., McNulty, J.: Matroids: A Geometric Introduction. Cambridge University Press, New York (2012)

    Book  MATH  Google Scholar 

  19. Awan, J., Bernardi, O.: Tutte polynomials for directed graphs. arXiv:1610.01839

  20. Krajewski, T., Rivasseau, V., Tanasa, A., Wang, Z.: Topological graph polynomials and quantum field theory, part I: heat kernel theories. J. Noncommut. Geom. 4, 29 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Krajewski, T., Rivasseau, V., Vignes-Tourneret, F.: Topological graph polynomials and quantum field theory. Part II: mehler kernel theories. Ann. Henri Poincare 12, 483 (2011)

    MathSciNet  MATH  Google Scholar 

  22. Avohou, R.C., Ben Geloun, J., Hounkonnou, M.N.: Recipe theorems for polynomial invariants on ribbon graphs with half-edges. arXiv:1301.1987 [math-GT] (accepted in Combinatorics, Probability and Computing)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Caravelli.

Appendices

Appendix A: Proof of Lemma 2

Let us recall Lemma 2:

Lemma 3

In notations of Theorem 21, for all \(k > 1\),

$$\begin{aligned} C_{k1;B}(G;\epsilon ,\epsilon ') = \epsilon ^{1}_B \sum _{\ell >1}^kA^{(0)}_{\ell 1} C_{k\ell ;B}(G;\epsilon ,\epsilon ') . \end{aligned}$$
(A.1)

Working at fixed graphs B and G, we simplify the notations as follows: \(C_{k\ell ;B}(G;\epsilon ,\epsilon ')=C_{k\ell }\). We prove the relation (A.1) by recurrence on k. At \(k=2\), we have \(C_{21}= \epsilon ^{1}_B A^{(0)}_{21} = \epsilon ^{1}_B A^{(0)}_{21} C_{22}\). Let us assume the result holds at k. Calculating the r.h.s of (A.1) at the next order \(k+1\), we find

$$\begin{aligned} \epsilon ^{1}_B \sum _{\ell>1}^{k+1}A^{(0)}_{\ell 1} C_{(k+1)\ell }= & {} \epsilon ^{1}_BA^{(0)}_{(k+1)1} + \epsilon ^{1}_BA^{(0)}_{k1}C_{(k+1)k} + \epsilon ^{1}_BA^{(0)}_{(k-1)1}C_{(k+1)(k-1)}\nonumber \\&+ \,\epsilon ^{1}_B \sum _{\ell>1}^{k-2}A^{(0)}_{\ell 1} \sum _{p=0}^{(k+1)-\ell -1} \sum _{\mathop { |Q_p|=p }\limits ^{Q_p \subseteq \{\ell +1,\dots , (k+1)-1\}}} \mathcal {A}_{(k+1)\ell ;B} (Q_p)\nonumber \\= & {} \epsilon ^{1}_BA^{(0)}_{(k+1)1} + \epsilon ^{1}_BA^{(0)}_{k1}C_{(k+1)k} + \epsilon ^{1}_BA^{(0)}_{(k-1)1}C_{(k+1)(k-1)}\nonumber \\&+\, \epsilon ^{1}_B \sum _{\ell>1}^{k-2}A^{(0)}_{\ell 1} \sum _{p=0}^{k-\ell } \left[ \sum _{\mathop { |Q_p|=p \;\text {and}\; k\in Q_p }\limits ^{Q_p \subseteq \{\ell +1,\dots , k\}}} + \sum _{\mathop { |Q_p|=p \; \text {and}\; k\notin Q_p }\limits ^{Q_p \subseteq \{\ell +1,\dots , k\}}} \right] \mathcal {A}_{(k+1)\ell ;B} (Q_p) \nonumber \\= & {} \epsilon ^{1}_BA^{(0)}_{(k+1)1} + \epsilon ^{1}_BA^{(0)}_{k1}C_{(k+1)k} + \epsilon ^{1}_BA^{(0)}_{(k-1)1}C_{(k+1)(k-1)}\nonumber \\&+\, \epsilon ^{1}_B \sum _{\ell >1}^{k-2}A^{(0)}_{\ell 1} \sum _{p=0}^{k-\ell } \left[ \sum _{\mathop { |Q_p|=p \;\text {and}\; k\in Q_p }\limits ^{Q_p \subseteq \{\ell +1,\dots , k\}}} + \sum _{\mathop { |Q_p|=p }\limits ^{Q_p \subseteq \{\ell +1,\dots , k-1\}}} \right] \mathcal {A}_{(k+1)\ell ;B} (Q_p).\nonumber \\ \end{aligned}$$
(A.2)

We expand \(C_{(k+1)(k-1)}\) as

$$\begin{aligned} C_{(k+1)(k-1)} = \mathcal {A}_{(k+1)(k-1)}(Q_0)+ \mathcal {A}_{(k+1)(k-1)}(\{k\}) = \epsilon ^{k-1}_B (A^{(k-2)}_{(k+1)(k-1)} + \epsilon ^{k}_B A^{(k-1)}_{(k+1)k}A^{(k-2)}_{k(k-1)}). \end{aligned}$$
(A.3)

For the terms in (A.2) such that \(k \in Q_p\), which implies \(p\ge 1\), because \(j_{p}^Q\le k \), we must have \(j^Q_p=k\) and so we can write

$$\begin{aligned} \mathcal {A}_{(k+1)\ell ;B} (Q_p) = \epsilon _B^{k}A^{(k-1)}_{(k+1) k} \left( \epsilon ^\ell _B \prod _{a=1}^{p-1} \epsilon ^{j^Q_a}_B \right) \left[ A^{(j^Q_{p-1}-1)}_{k j^Q_{p-1}}\left( \prod _{i=2}^{p-1} A^{(j^Q_{i-1}-1)}_{j^Q_i j^Q_{i-1}} \right) A^{(\ell -1)}_{ j^Q_1 \ell } \right] . \end{aligned}$$
(A.4)

The sum over the terms in (A.2) with \(k\in Q_{p\ge 1}\) yields, after adjusting the variable \(p-1 \rightarrow p\),

$$\begin{aligned}&\epsilon ^{1}_BA^{(0)}_{k1}C_{(k+1)k} + \epsilon ^{k}_B\epsilon ^{1}_BA^{(0)}_{(k-1)1} A^{(k-1)}_{(k+1)k}A^{(k-2)}_{k(k-1)} \nonumber \\&\quad + \,\epsilon ^{1}_B \sum _{\ell>1}^{k-2}A^{(0)}_{\ell 1} \sum _{p=1}^{k-\ell } \left[ \sum _{\mathop { |Q_p|=p \;\text {and}\; k\in Q_p }\limits ^{Q_p \subseteq \{\ell +1,\dots , k\}}} \right] \epsilon _B^{k}A^{(k-1)}_{(k+1) k} \left( \epsilon ^\ell _B \prod _{a=1}^{p-1} \epsilon ^{j^Q_a}_B \right) \nonumber \\&\quad \times \left[ A^{(j^Q_{p-1}-1)}_{k j^Q_{p-1}}\left( \prod _{i=2}^{p-1} A^{(j^Q_{i-1}-1)}_{j^Q_i j^Q_{i-1}} \right) A^{(\ell -1)}_{ j^Q_1 \ell } \right] \nonumber \\&= \epsilon ^{1}_BA^{(0)}_{k1} \epsilon ^{k}_B A^{(k-1)}_{(k+1)k} + \epsilon ^{k}_B\epsilon ^{1}_BA^{(0)}_{(k-1)1} A^{(k-1)}_{(k+1)k}A^{(k-2)}_{k(k-1)} \nonumber \\&\quad +\, \epsilon _B^{k}A^{(k-1)}_{(k+1) k}\; \epsilon ^{1}_B \sum _{\ell>1}^{k-2}A^{(0)}_{\ell 1} \sum _{p=1}^{k-\ell } \left[ \sum _{\mathop { |Q_p|=p -1 }\limits ^{Q_p \subseteq \{\ell +1,\dots , k-1\}}} \right] \left( \epsilon ^\ell _B \prod _{a=1}^{p-1} \epsilon ^{j^Q_a}_B \right) \nonumber \\&\quad \times \left[ A^{(j^Q_{p-1}-1)}_{k j^Q_{p-1}}\left( \prod _{i=2}^{p-1} A^{(j^Q_{i-1}-1)}_{j^Q_i j^Q_{i-1}} \right) A^{(\ell -1)}_{ j^Q_1 \ell } \right] \nonumber \\&= \epsilon ^{1}_BA^{(0)}_{k1} \epsilon ^{k}_B A^{(k-1)}_{(k+1)k} + \epsilon ^{k}_B \epsilon ^{1}_BA^{(0)}_{(k-1)1} A^{(k-1)}_{(k+1)k}A^{(k-2)}_{k(k-1)} \nonumber \\&\quad + \epsilon _B^{k}A^{(k-1)}_{(k+1) k}\; \epsilon ^{1}_B \sum _{\ell>1}^{k-2}A^{(0)}_{\ell 1} \sum _{p=0}^{k-\ell -1} \sum _{\mathop { |Q_p|=p }\limits ^{Q_p \subseteq \{\ell +1,\dots , k-1\}}} \mathcal {A}_{k\ell ;B} (Q_p) = \epsilon _B^{k}A^{(k-1)}_{(k+1) k}\; \epsilon ^{1}_B \sum _{l>1}^{k}A^{(0)}_{\ell 1} C_{k\ell } \nonumber \\&=\epsilon _B^{k}A^{(k-1)}_{(k+1) k}\; C_{k1}, \end{aligned}$$
(A.5)

where in the last line, use has been made of the recurrence hypothesis. Let us concentrate on the second type of terms \(k\notin Q_p\) in (A.2) that we write, because there is no subsets of size \(k-\ell >0\) (omitting \(\epsilon ^{1}_BA^{(0)}_{(k+1)1}\))

$$\begin{aligned}&\epsilon ^{k-1}_B \epsilon ^{1}_BA^{(0)}_{(k-1)1} A^{(k-2)}_{(k+1)(k-1)} + \epsilon ^{1}_B \sum _{\ell>1}^{k-2}A^{(0)}_{\ell 1} \sum _{p=0}^{k-\ell -1} \left[ \sum _{\mathop { |Q_p|=p }\limits ^{Q_p \subseteq \{\ell +1,\dots , k-1\}}} \right] \mathcal {A}_{(k+1)\ell ;B} (Q_p) \nonumber \\&= \epsilon ^{k-1}_B \epsilon ^{1}_BA^{(0)}_{(k-1)1} A^{(k-2)}_{(k+1)(k-1)} + \epsilon ^{1}_B A^{(0)}_{(k-2) 1} (\mathcal {A}_{(k+1)(k-2);B} (Q_0)+ \mathcal {A}_{(k+1)(k-2);B} (\{k-1\})) \nonumber \\&\quad +\, \epsilon ^{1}_B \sum _{\ell>1}^{k-3}A^{(0)}_{\ell 1} \sum _{p=0}^{k-\ell -1} \left[ \sum _{\mathop { |Q_p|=p }\limits ^{Q_p \subseteq \{\ell +1,\dots , k-1\}}} \right] \mathcal {A}_{(k+1)\ell ;B} (Q_p) \nonumber \\&= \epsilon ^{k-1}_B \epsilon ^{1}_BA^{(0)}_{(k-1)1} A^{(k-2)}_{(k+1)(k-1)} + \epsilon ^{1}_B A^{(0)}_{(k-2) 1} \left( \epsilon _B^{k-2} A^{(k-1)}_{(k+1)(k-2)} \right. \nonumber \\&\quad \left. +\, \epsilon ^{k-2}_B \epsilon ^{k-1}_B A^{(k-2)}_{(k+1)(k-1)} A^{(k-3)}_{(k-1)(k-2)} \right) \nonumber \\&\quad +\, \epsilon ^{1}_B \sum _{\ell >1}^{k-3}A^{(0)}_{\ell 1} \sum _{p=0}^{k-\ell -1} \left[ \sum _{\mathop { |Q_p|=p }\limits ^{Q_p \subseteq \{\ell +1,\dots , k-1\}}} \right] \mathcal {A}_{(k+1)\ell ;B} (Q_p) . \end{aligned}$$
(A.6)

Now we iterate the same procedure and split the sum over subsets \(Q_p \subset \{\ell +1,\dots , k-1\}\), among the terms containing \(k-1\) and those which do not. Using the same decomposition as in (A.4) followed by the expansion (A.5), we obtain by summing those terms containing \(k-1\), and a few algebra from (A.6):

$$\begin{aligned}&\epsilon ^{k-1}_B A^{(k-2)}_{(k+1)(k-1)}\left[ \epsilon ^{1}_BA^{(0)}_{(k-1)1} + \epsilon ^{1}_B\epsilon ^{k-2}_B A^{(0)}_{(k-2) 1} A^{(k-3)}_{(k-1)(k-2)} \right. \nonumber \\&\left. + \epsilon ^{1}_B \sum _{\ell>1}^{k-3}A^{(0)}_{\ell 1} \sum _{p=0}^{k-\ell -2} \sum _{\mathop { |Q_p|=p }\limits ^{Q_p \subseteq \{\ell +1,\dots , k-2\}}} \mathcal {A}_{(k-1)\ell ;B} \right] \nonumber \\&= \epsilon ^{k-1}_B A^{(k-2)}_{(k+1)(k-1)}\Big [ \epsilon ^{1}_BA^{(0)}_{(k-1)1} C_{(k-1)(k-1)} + \epsilon ^{1}_BA^{(0)}_{(k-2)1} C_{(k-1)(k-2)} + \epsilon ^{1}_B \sum _{\ell>1}^{k-3}A^{(0)}_{\ell 1}C_{(k-1)\ell } \Big ]\nonumber \\&= \epsilon ^{k-1}_B A^{(k-2)}_{(k+1)(k-1)}\Big [ \epsilon ^{1}_B \sum _{\ell >1}^{k-1} A^{(0)}_{\ell 1} C_{(k-1)\ell } \Big ] = \epsilon ^{k-1}_B A^{(k-2)}_{(k+1)(k-1)} C_{(k-1)1}, \end{aligned}$$
(A.7)

where again we have used the recurrence hypothesis, this time, at order \(k-1\). The procedure can be pursued until no more terms are left in the sum, and one gets as an upshot

$$\begin{aligned} \epsilon ^{1}_B \sum _{\ell >1}^{k+1}A^{(0)}_{\ell 1} C_{(k+1)\ell }= & {} \epsilon _B^{k}A^{(k-1)}_{(k+1) k}\; C_{k1} + \epsilon ^{k-1}_B A^{(k-2)}_{(k+1)(k-1)} C_{(k-1)1} + \dots \nonumber \\&+ \,\epsilon ^{2}_B A^{(1)}_{(k+1)2} C_{21} +\epsilon ^{1}_BA^{(0)}_{(k+1)1} C_{11} \nonumber \\= & {} \sum _{\ell =1}^{k} \epsilon _B^{\ell }A^{(\ell -1)}_{(k+1) \ell }\; C_{\ell 1} . \end{aligned}$$
(A.8)

We substitute the value of \(C_{\ell 1}\) in the above expression and obtain

$$\begin{aligned} \epsilon ^{1}_B \sum _{\ell >1}^{k+1}A^{(0)}_{\ell 1} C_{(k+1)\ell }= & {} \epsilon ^{1}_BA^{(0)}_{(k+1)1} + \sum _{\ell =2}^{k} \; \sum _{p=0}^{\ell -2} \sum _{\mathop { |Q_p|=p }\limits ^{Q_p \subseteq \{2,\dots , \ell -1\}}} \epsilon _B^{\ell }A^{(\ell -1)}_{(k+1) \ell }\, \mathcal {A}_{\ell 1;B} (Q_p) \nonumber \\= & {} \epsilon ^{1}_BA^{(0)}_{(k+1)1} + \sum _{p=0}^{k-2} \sum _{\mathop { |Q_p|=p }\limits ^{Q_p \subseteq \{2,\dots , k -1\}}} \sum _{\ell =\max (p+2,j^Q_{p}+1)}^{k} \epsilon _B^{\ell }A^{(\ell -1)}_{(k+1) \ell }\, \mathcal {A}_{\ell 1;B} (Q_p) .\nonumber \\ \end{aligned}$$
(A.9)

Observing that \(2\le j^Q_1< \dots < j^Q_p \), then \(j^Q_p \ge p+2\) such that \(\max (p+2,j^Q_{p}+1)=j^Q_{p}+1\). Furthermore, because \(j^Q_p < \ell \), we re-express the above formula as

$$\begin{aligned} \epsilon ^{1}_B \sum _{\ell >1}^{k+1}A^{(0)}_{\ell 1} C_{(k+1)\ell }= & {} \epsilon ^{1}_BA^{(0)}_{(k+1)1} + \sum _{p=0}^{k-2} \sum _{\mathop { |Q_p|=p }\limits ^{Q_p \subseteq \{2,\dots , k -1\}}} \sum _{\ell =j^Q_{p}+1}^{k} \mathcal {A}_{(k+1)1;B} (Q_p \cup \{\ell \}) \nonumber \\= & {} \epsilon ^{1}_BA^{(0)}_{(k+1)1} + \sum _{p=0}^{k-2} \sum _{\mathop { |Q_{p+1}|=p+1 }\limits ^{Q_{p+1} \subseteq \{2,\dots , k\}}} \mathcal {A}_{(k+1)1;B} (Q_{p+1}) \nonumber \\= & {} \epsilon ^{1}_BA^{(0)}_{(k+1)1} + \sum _{p=1}^{k-1} \sum _{\mathop { |Q_{p}|=p }\limits ^{Q_{p} \subseteq \{2,\dots , k\}}} \mathcal {A}_{(k+1)1;B} (Q_{p}) \nonumber \\= & {} \sum _{p=0}^{k-1} \sum _{\mathop { |Q_{p}|=p }\limits ^{Q_{p} \subseteq \{2,\dots , k\}}} \mathcal {A}_{(k+1)1;B} (Q_{p}) = C_{(k+1)1}. \end{aligned}$$
(A.10)

\(\square \)

Appendix B: A Worked Out Example

Consider the graph G of Fig. 3, with edge set \(\{e_{i}\}_{i=1,\dots , 5}\). We call \(\{e_1,e_3,e_5\}=E_1\) the edge set of \(G_1\), and \(\{e_2,e_4\} = E_2\), the edge set of \(G_2\). Note that the subgraphs \(G_1\) and \(G_2\) are symmetric under relabelling, so it does not matter to claim which edge is which in that figure.

Let us pick the sequence \((e_1,e_2,e_3,e_4,e_5)\) in which we want to perform the contraction deletion.

Fig. 3
figure 3

A disconnected graph \(G=G_1 \cup G_2\)

Now, we can apply the state sum to find the polynomial. We will use a graphical representation to compute the \(2^5\) terms of the sum and will simplify the notations. We have

(B.11)

Let us concentrate on the first term. Because the subgraph contains all edges, we can write (working at fixed subgraph B, we omit it in the notations):

(B.12)

with

$$\begin{aligned} \widehat{\lambda }_{1}= & {} \lambda _1\,; \nonumber \\ \widehat{\lambda }_{2}= & {} C_{2 1;B}(G;\epsilon ,\epsilon ')\lambda _1 +\lambda _2 = \epsilon \Big (A^{(0)}_{21} = 0 \Big ) \lambda _1 +\lambda _2 = \lambda _2 \,; \nonumber \\ \widehat{\lambda }_{3}= & {} C_{3 1}(G;\epsilon ,\epsilon ')\lambda _1 +C_{32}(G;\epsilon ,\epsilon ')\lambda _2 + \lambda _3 = C_{3 1}(G;\epsilon ,\epsilon ')\lambda _1 +\epsilon \Big (A^{(1)}_{32} = 0\Big )\lambda _2 + \lambda _3 \nonumber \\= & {} \epsilon \Big (A^{(0)}_{31}=1\Big ) \lambda _1 + \lambda _3 = \epsilon \lambda _1 + \lambda _3, \nonumber \\ \text{ where }&C_{3 1}(G;\epsilon ,\epsilon ') = \mathcal {A}_{31} (\emptyset ) + \mathcal {A}_{31} (\{2\}) = \epsilon A^{(0)}_{31} + \epsilon ^2\Big (A^{(1)}_{32}=0\Big )\Big (A^{(0)}_{21} = 0\Big ) = \epsilon A^{(0)}_{31}\,; \nonumber \\ \widehat{\lambda }_{4}= & {} (C_{41}(G;\epsilon ,\epsilon ')=0)\lambda _1 + \epsilon (A^{(1)}_{42}=1) \lambda _2 + \epsilon (A^{0}_{43}=0)\lambda _3 + \lambda _4 = \epsilon \lambda _2 + \lambda _4 , \nonumber \\ \text{ where }&C_{41}(G;\epsilon ,\epsilon ') = \mathcal {A}_{41} (\emptyset ) + \mathcal {A}_{41} (\{2\}) + \mathcal {A}_{41} (\{3\}) \nonumber \\&= \epsilon (A^{(0)}_{41}=0) + \epsilon ^2 A^{(1)}_{42}(A^{(0)}_{21}=0) + \epsilon ^2 (A^{(2)}_{43}=0)A^{(0)}_{31} =0 \nonumber \\ \text{ and }&C_{42}(G;\epsilon ,\epsilon ') = \mathcal {A}_{42} (\emptyset ) + \mathcal {A}_{43} (\{3\}) = \epsilon A^{(1)}_{42} + \epsilon ^2 (A^{(2)}_{43}=0)(A^{(1)}_{32} =0)= \epsilon A^{(1)}_{42}\,; \nonumber \\ \widehat{\lambda }_{5}= & {} C_{51}(G;\epsilon ,\epsilon ')\lambda _1 + (C_{52}(G;\epsilon ,\epsilon ')=0)\lambda _2 + C_{53}(G;\epsilon ,\epsilon ')\lambda _3 + \epsilon (A^{(3)}_{54}=0)\lambda _4 + \lambda _5 \nonumber \\= & {} (\epsilon + \epsilon ^2)\lambda _1 + \epsilon \lambda _3 + \lambda _5 , \nonumber \\ \text{ where }&C_{51}(G;\epsilon ,\epsilon ') = \mathcal {A}_{51} (\emptyset ) + \mathcal {A}_{51} (\{2,3,4\}) \nonumber \\&+ \,\mathcal {A}_{51} (\{2\}) + \mathcal {A}_{51} (\{3\}) +\mathcal {A}_{51} (\{4\}) + \mathcal {A}_{51} (\{2,3\}) + \mathcal {A}_{51} (\{2,4\}) + \mathcal {A}_{51} (\{3,4\}) \nonumber \\&= \epsilon A^{(0)}_{51} + (\epsilon ^{4}A^{(3)}_{54}...A^{(0)}_{21}=0) + \epsilon ^2 (A^{(1)}_{52}A^{(0)}_{21}=0) + \epsilon ^2 (A^{(2)}_{53}A^{(0)}_{31}=1)\nonumber \\&+ \,\epsilon ^2 (A^{(4)}_{54}A^{(0)}_{41}=0) + (\mathcal {A}_{51} (\{2,3\}) =0) + (\mathcal {A}_{51} (\{2,4\}) =0) + (\mathcal {A}_{51} (\{3,4\}) =0) \nonumber \\&= \epsilon A^{(0)}_{51} + \epsilon ^2 (A^{(2)}_{53}A^{(0)}_{31}=1) = \epsilon + \epsilon ^2 \nonumber \\ \text{ and }&C_{53}(G;\epsilon ,\epsilon ') = \mathcal {A}_{53} (\emptyset ) + (\mathcal {A}_{53} (\{4\}) =0) = \epsilon A^{(2)}_{53} , \end{aligned}$$
(B.13)

as

(B.14)

where in the two last equalities, we emphasize the factorization of this monomial between the contribution of two subgraphs of \(G_1\) and \(G_2\). Using the same technique, we list

(B.15)

We can already read that the polynomial associated with the graph \(G_2\) is given by

$$\begin{aligned} P^{\epsilon ,\epsilon '}(G_2;q;\{\lambda _j\}_{j=2,4})= & {} q\Big [\alpha (\lambda _2) \alpha (\lambda _4 + \epsilon \lambda _2) + \beta (\lambda _2) \alpha (\lambda _4 + \epsilon ' \lambda _2) \nonumber \\&+\, \alpha (\lambda _2) \beta (\lambda _4 + \epsilon \lambda _2) + q \beta (\lambda _2) \beta (\lambda _4 + \epsilon ' \lambda _2)\Big ] . \end{aligned}$$
(B.16)

Now we can calculate the following terms

(B.17)

We deal with the next type of terms of the form:

(B.18)

Finally, we evaluate

(B.19)

Adding all contributions, one finds the ordering-dependent Tutte polynomial associated with the graph \(G_1 \cup G_2\), performing a sequence of contractions and deletions as (1, 2, 3, 4, 5).

In a final comment, we want to address here the special case \(\epsilon =\epsilon '=1\) and \(\lambda _j = \lambda \) in view of possible interesting deformation of the ordinary Tutte polynomial. Consider the above example on \(G_2\) and \(G_1\), setting for simplicity \(\beta =1\), and therefore we write

$$\begin{aligned} P^{1,1}(G_2;q;\lambda )= & {} q\Big [\alpha (\lambda ) \alpha (2\lambda ) + \alpha (2\lambda ) + \alpha (\lambda ) + q \Big ] \nonumber \\= & {} \sum _{B \subset G_2} q^{k(B)} \prod _{e\in B}\alpha (\lambda ^B_e), \end{aligned}$$
(B.20)

where \(\lambda _e^B = c^B_e \lambda \) and \(c_e^B\) is a positive integer. Observe that, for this example, \(c_e^B\) becomes independent of B and so we reduce to the multivariate version of the Tutte polynomial [1] (to be explicit, we can redefine the edge labelling such that the polynomial \(P^{1,1}\) coincides with multivariate Tutte polynomial). This is generally true when the adjacency matrix of the line graph is invariant under permutation of the edges. The case of clique graphs is a particular instance for which this is realized. Thus, for this type of graphs, we naturally loose the dependence on the order in which we perform the sequence of contraction deletion. We can check if this is also the case for the graph \(G_1\) and find,

$$\begin{aligned} P^{1,1}(G_1;q;\lambda )= & {} q^{2} \alpha (\lambda ) \alpha (2\lambda ) \alpha (4\lambda ) + q \alpha (2\lambda ) \alpha (4\lambda ) + q \alpha (\lambda ) \alpha (2\lambda ) \nonumber \\&+ q \alpha (\lambda ) \alpha (4\lambda ) + q^2 \alpha (4\lambda ) + q^2 \alpha (\lambda ) + q^2 \alpha (2\lambda ) + q^3 \nonumber \\= & {} \sum _{B \subset G_1} q^{k(B)} \prod _{e\in B}\alpha (\lambda _e), \end{aligned}$$
(B.21)

confirming our expectations. In conclusion, in this particular limit, and for particular graphs, the order-independence of the generalized Tutte polynomial can be effectively restored.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geloun, J.B., Caravelli, F. On an Ordering-Dependent Generalization of the Tutte Polynomial. J Stat Phys 168, 1105–1124 (2017). https://doi.org/10.1007/s10955-017-1831-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-017-1831-x

Keywords

Navigation