Skip to main content
Log in

Entropy Chaos and Bose-Einstein Condensation

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We prove the entropy-chaos property for the system of N indistinguishable interacting diffusions rigorously associated with the ground state of N trapped Bose particles in the Gross–Pitaevskii scaling limit of infinitely many particles. On the path-space we show that the sequence of probability measures of the one-particle interacting diffusion weakly converges to a limit probability measure, uniquely associated with the minimizer of the Gross-Pitaevskii functional.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. See the derivation of the solution \(\phi _0\) before Definition 3.1.

  2. In fact if \({\mathbb {Q}}_1\) and \(\mathbb {Q}_2\) are two absolutely continuous measures in \(\mathbb {R}^d\) with densities \(f_1\) and \(f_2\) respectively , then \(d_{VT}(\mathbb {Q}_1,\mathbb {Q}_2):=\sup _{A\in {\mathcal B}(\mathbb {R}^d)}|{{\mathbb {Q}}}_1(A)-{\mathbb {Q}}_2(A)|=\sup _{A\in {\mathcal B}(\mathbb {R}^d)}|\int _{A}f_1(\mathbf{r})d\mathbf{r}-\int _{A}f_2(\mathbf{r})d\mathbf{r}|=\int _{f_1>f_2} (f_1(\mathbf{r})-f_2(\mathbf{r}))d\mathbf{r}=\int _{f_2>f_1} (f_2(\mathbf{r})-f_1(\mathbf{r}))\mathbf{r}=\frac{1}{2}\int |f_1(\mathbf{r})-f_2(\mathbf{r})|d\mathbf{r}\).

References

  1. Adami, R., Golse, F., Teta, A.: Rigorous derivation of the cubic NLS in dimension one. J. Stat. Phys. 127(6), 1193–1220 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Albeverio, S., Ugolini, S.: A Doob h-transform of the Gross-Pitaevskii Hamiltonian. J. Stat. Phys. 161(2), 486–508 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Billingsley, P.: Convergence of Probability Measures, 2nd edn. Wiley, New York (1999)

    Book  MATH  Google Scholar 

  4. Borwein, J.M., Lewis, A.S.: Convergence of best entropy estimates. SIAM J. Optimiz. 1(2), 191–205 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  5. Carlen, E.: Conservative diffusions. Commun. Math. Phys. 94(3), 293–315 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Carlen, E.: Existence and Sample Path Properties of the Diffusions in Nelson’s Stochastic Mechanics. Lecture Notes in Mathematics, pp. 25–51. Springer, Berlin, Heidelberg, New York (1985)

    Google Scholar 

  7. Carlen E.: Progress and Problems in Stochastic Mechanics, in Stochastic Methods in Mathematical Physics., (1989), Word Scientific, Singapore

  8. Carlen E.: Stochastic Mechanics: a Look Back and a Look Ahead. In: Diffusion, Quantum Theory and Radically Elementary Mathematics, chapter 5, Princeton University Press, Princeton (2006)

  9. Carlen, E.A., Carvalho, M.C., Le Roux, J., Loss, M., Villani, C.: Entropy and chaos in the Kac model. Kinet. Relat. Models 3(1), 85–122 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cherny, A.Y., Shanenko, A.A.: The kinetic and interaction energies of a trapped Bose gas: beyond the mean field. Phys. Lett. 293, 287 (2002)

    Article  MATH  Google Scholar 

  11. Cornell, E.A., Wieman, C.E.: Bose-Einstein condensation in a dilute gas: the first 70 years and some recent experiments (Nobel Lecture). Chemphyschem 3(6), 473–493 (2002)

    Article  Google Scholar 

  12. Csiszar, I.: Information type measures of difference of probability distributions and indirect observations. Stud. Sci. Math. Hung. 2, 299–318 (1967)

    MathSciNet  MATH  Google Scholar 

  13. De Vecchi, F.C., Ugolini, S.: An entropy approach to Bose-Einstein Condensation. Comm. on Stoch. Anal. 8(4), 517–529 (2014)

    MathSciNet  Google Scholar 

  14. De Vecchi, F.C., Morando, P.: Symmetries of stochastic differential equations: a geometric approach. J. Math. Phys. 57(6), 1–17 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. De Vecchi, F.C., Morando, P., Ugolini, S.: Reduction and reconstruction of SDEs via symmetries. J. Math. Phys. 57(12), 123508 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Dell’Antonio, G., Posilicano, A.: Convergence of nelson diffusions. Comm. Math. Phys. 141(3), 559–576 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Erdös L., Schlein B. and Yau H.T.: Rigorous derivation of the Gross-Pitaevskii equation, Phys. Rev. Lett. 98 (2007), no. 4, 040404, 1–4

  18. Föllmer, H.: Random Fields and Diffusion Processes, in: Lecture Notes in Mathematics 1362, (1988) 101–203, Springer, Berlin

  19. Fukushima, M.: Dirichlet Forms and Markov Processes. North-Holland, Amsterdam (1980)

    MATH  Google Scholar 

  20. Fukushima, M., Oshima, T.: Dirichlet Forms and Markov Processes. North-Holland, Amsterdam (1980)

    MATH  Google Scholar 

  21. Gross, E.P.: Structure of a quantized vortex in boson system. Nuovo Cimento 20(3), 454–477 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  22. Guerra, F., Morato, L.M.: Quantization of dynamical systems and stochastic control theory. Phys. Rev. D 27, 1774–1786 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  23. Hauray, M., Mischler, S.: On Kac’s chaos and related problems. J. Func. Anal. 16(7), 1423–1466 (2014)

    MathSciNet  MATH  Google Scholar 

  24. Kac M.: Foundations of kinetic theory, In: Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability 3, 171–197, University of California Press, Berkeley and Los Angeles (1956)

  25. Ketterle W., van Druten N.J.: Evaporative Cooling of Trapped Atoms. In: Advances in Atomic, Molecular and Optical Physics 37, pp. 181–236. Academic Press, S. Diego (1996)

  26. Kullback, S.: A lower bound for discrimination in terms of variation. IEEE Trans. Infor. Theory 4, 126–127 (1967)

    Article  Google Scholar 

  27. Lescot, P., Zambrini, J.C.: Probabilistic deformation of contact geometry, diffusion processes and their quadratures. Prog. Prob. 59, 203–226 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lewin, M., Nam, P.T., Rougerie, N.: The mean-field approximation and the non-linear Schrödinger functional for trapped Bose gas. Trans. Amer. Math. Soc. 368, 6131–6157 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Lieb, E.H., Seiringer, R., Yngvason, J.: Bosons in a trap: a rigorous derivation of the Gross-Pitaevskii energy functional. Phys. Rev. A 61(043602), 1–13 (2000)

    Google Scholar 

  30. Lieb, E.H., Seiringer, R.: Proof of Bose-Einstein condensation for dilute trapped gases Phys. Rev. Lett. 88(170409), 1–4 (2002)

    Google Scholar 

  31. Lieb, E.H., Seiringer, R., Solovej, J.P., Yngvason, J.: The Mathematics of the Bose Gas and its Condensation. Birkhäuser Verlag, Basel (2005)

    MATH  Google Scholar 

  32. Lions, P.L.: Two geometrical properties of solutions of semilinear problems. Appl. Anal. 12, 267–272 (1981)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Loffredo, M., Morato, L.M.: Stochastic quantization for a system of N identical interacting Bose particles. J Phys. A 40(30), 8709 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Ma, Z.M., Röckner, M.: Introduction to the Theory of (Non-Symmetric) Dirichlet Forms. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  35. Michelangeli, A.: Bose-Einstein Condensation: Analysis of Problems and Rigorous Results. Ph.D.Thesis, SISSA, Italy (2007)

  36. Morato, L.M., Ugolini, S.: Stochastic description of a Bose-Einstein Condensate. Annal. Inst. Henry Poincaré 12(8), 1601–1612 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Morato, L.M., Ugolini, S., Localization of relative entropy in Bose-Einstein Condensation of trapped interacting bosons, In: Seminar on Stochastic Analysis, Random Fields and Applications VII 67, 197–210. Birkhäuser, Basel (2013)

  38. Nelson, E.: Dynamical Theories of Brownian Motion. Princeton University Press, Princeton (1967)

    MATH  Google Scholar 

  39. Nelson, E.: Quantum Fluctuations. Princeton University Press, Princeton (1985)

    MATH  Google Scholar 

  40. Otto, F., Villani, C.: Generalization of an inequality by Talagrand, and links with the logarithmic Sobolev inequality. J. Funct. Anal. 173(2), 361–400 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  41. Pitaevskii, L.P.: Vortex lines in an imperfect Bose gas. Sov. Phys. JETP 13, 451–454 (1961)

    MathSciNet  Google Scholar 

  42. Posilicano, A., Ugolini, S.: Convergence of Nelson Diffusions with time-dependent electromagnetic potentials. J. Math. Phys. 34, 5028–5036 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Reed, M., Simon, B.: Analysis of Operators, Methods of Modern Mathematical Physics, vol. 4. Academic Press, S. Diego (1978)

    MATH  Google Scholar 

  44. Stroock, D.W., Varadhan, S.R.S.: Multidimensional Diffusion Processes. Springer-Verlag, New York (1979)

    MATH  Google Scholar 

  45. Sznitman A.S.: Topics in Propagation of Chaos. in Lecture notes in mathematics 1464, pp. 164–251. Springer, Berlin (1991)

  46. Ugolini, S.: Bose-Einstein condensation: a transition to chaos result. Commun. Stoch. Anal. 6(4), 565–587 (2012)

    MathSciNet  MATH  Google Scholar 

  47. Villani, C.: Optimal transport, Old and New. Springer-Verlag, Berlin (2009)

    Book  MATH  Google Scholar 

  48. Zambrini, J.C.: Variational processes and stochastic version of mechanics. J. Math. Phys. 27(9), 2307 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors have benefited from the gracious hospitality of the Centre Interfacultaire Bernoulli at the EPFL, Lausanne, during the semester: Geometric Mechanics, Variational and Stochastic Methods (1 January, 30 June 2015) organized by S. Albeverio, A.B. Cruzeiro and D. Holm. The second and third authors also thanks the NSF for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefania Ugolini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albeverio, S., De Vecchi, F.C. & Ugolini, S. Entropy Chaos and Bose-Einstein Condensation. J Stat Phys 168, 483–507 (2017). https://doi.org/10.1007/s10955-017-1820-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-017-1820-0

Keywords

Mathematics Subject Classification

Navigation