Skip to main content
Log in

Diffusion on Delone sets

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider graphs associated to Delone sets in Euclidean space. Such graphs arise in various ways from tilings. Here, we provide a unified framework. In this context, we study the associated Laplace operators and show Gaussian heat kernel bounds for their semigroups. These results apply to both metric and discrete graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. By adding points on the edges one can then automatically ensure that the edge lengths are bounded from above as well.

References

  1. Auscher, P., Coulhon, T., Grigor’yan, A. (eds): Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces, Contemp. Math. 338, Amer. Math. Soc., Providence (2003)

  2. Baake, M., Lenz, D.: Spectral notions of aperiodic order. Discret. Contin. Dyn. Syst. S 10, 161–190 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baake, M., Grimm, U.: Aperiodic Order, A Mathematical Invitation, vol. 1. Cambridge University Press, Cambridge (2013)

    Book  MATH  Google Scholar 

  4. Barlow, M., Bass, R.F., Kumagai, T.: Stability of parabolic Harnack inequalities on metric measure spaces. J. Math. Soc. Japan 58, 485–519 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barlow, M.: Random Walks and Heat Kernels on Graphs. Cambridge University Press, Cambridge (2017)

    Book  MATH  Google Scholar 

  6. Berkolaiko, G., Carlson, R., Fulling, S.A., Kuchment, P. (eds.): Quantum Graphs and Their Applications. Contemporary Mathematics 415, American Mathematical Society, Provicence (2006)

    MATH  Google Scholar 

  7. Damanik, D., Embree, M., Gorodetski, A.: Spectral properties of Schrödinger operators arising in the study of quasicrystals. Math. Aperiodic Order 19, 307–370 (2015)

    Article  Google Scholar 

  8. Damanik, D., Gorodetski, A., Solomyak, B.: Absolutely continuous convolutions of singular measures and an application to the square Fibonacci Hamiltonian. Duke Math. J. 164, 1603–1640 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Delmotte, T.: Parabolic Harnack inequality and estimates of Markov chains on graphs. Rev. Mat. Iberoam. 15, 181–232 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Exner, P., Keating, J.P., Kuchment, P., Sunada, T., Teplyaev, A. (eds.): Analysis on graphs and its applications. In: Proceedings of Symposia in Pure Mathematics 77, Amer. Math. Soc., Providence (2008)

  11. Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet forms and symmetric Markov processes. Second Revised and Extended Edition. de Gruyter Studies in Mathematics 19. Walter de Gruyter & Co., Berlin (2011)

    Google Scholar 

  12. Gähler, F., Stampfli, P.: The dualisation method revisited: dualisation of product Laguerre complexes as a unifying framework. Int. J. Mod. Phys. B 7, 1333–1349 (1933)

    Article  MathSciNet  MATH  Google Scholar 

  13. Grigor’yan, A.: The heat equation on noncompact Riemannian manifolds, (Russian) Mat. Sb. 182: 55–87; translation in Math. USSR-Sb. 72(1992), 47–77 (1991)

  14. Grünbaum, B., Shephard, G.C.: Tilings and Patterns. W. H. Freeman and Company, New York (1987)

    MATH  Google Scholar 

  15. Haeseler, S.: Heat kernel estimates and related inequalities on metric graphs, http://arxiv.org/abs/1101.3010

  16. Ishimasa, T., Nissen, H.U., Fukano, Y.: New ordered state between crystalline and amorphous in Ni–Cr particles. Phys. Rev. Lett. 55, 511–513 (1985)

    Article  ADS  Google Scholar 

  17. Kanai, M.: Rough isometries, and combinatorial approximations of geometries of noncompact Riemannian manifolds. J. Math. Soc. Japan 37, 391–413 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Kanai, M.: Analytic inequalities, and rough isometries between noncompact Riemannian manifolds, Curvature and topology of Riemannian manifolds (Katata, 1985). Lecture Notes in Math, vol. 1201, pp. 122–137. Springer, Berlin (1986)

  19. Kellendonk, J., Lenz, D., Savinien, J. (eds): Mathematics of aperiodic order, Prog. Math. 309, Birkhäuser, Basel (2015)

  20. Kellendonk, J., Putnam, I.: Tilings, \(C^*\)-algebras, and \(K\)-theory, Directions in mathematical quasicrystals, CRM Monogr. Ser.13. In: Baake, M., Moody, R.V. (eds.), pp. 177–206, American Mathematical Society Providence (2000)

  21. Keller, M., Lenz, D., Vogt, H., Wojciechowski, R.: Note on basic features of large time behaviour of heat kernels. J. Reine Angew. Math. 708, 73–95 (2015)

    MathSciNet  MATH  Google Scholar 

  22. Lagarias, J.C.: Geometric models for quasicrystals I. Delone sets of finite type. Discrete Comput. Geom. 21(2), 161–191 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lagarias, J., Pleasants, P.A.B.: Repetitive Delone sets and quasicrystals. Ergod. Theory Dyn. Syst. 23, 831–867 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lenz, D., Stollmann, P.: Generic sets in spaces of measures and generic singular continuous spectrum for Delone Hamiltonians. Duke Math. J. 131, 203–217 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Moody, R.V. (ed.): The mathematics of long-range aperiodic order, NATO ASI C 489, 9–44 (1997)

  26. Pang, M.H.H.: The heat kernel of the Laplacian defined on a uniform grid. Semigroup Forum 78, 238–252 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Patera, J. (ed.): Quasicrystals and Discrete Geometry, Fields Institute Monographs 10. American Mathematical Society, Providence (1998)

    Google Scholar 

  28. Priebe, N.M.: Towards a characterization of self-similar tilings in terms of derived Voronoi tesselations. Geom. Dedic. 79, 239–265 (2000)

    Article  MATH  Google Scholar 

  29. Saloff-Coste, L.: A note on Poincar\(\acute{{\rm e}}\), Sobolev, and Harnack inequalities. Int. Math. Res. Not. 1992, 27–38 (1992)

    Article  MATH  Google Scholar 

  30. Schlottmann, M.: Periodic and quasi-periodic Laguerre tilings. Int. J. Mod. Phys. B 7, 1351–1363 (1933)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Senechal, M.: Quasicrystals and Geometry. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  32. Shechtman, D., Blech, I., Cahn, J.W.: Metallic phase with long-range orientational order and no translation symmetry. Phys. Rev. Lett. 53, 183–185 (1984)

    Article  Google Scholar 

  33. Sturm, K.T.: Analysis on local Dirichlet spaces. III. The parabolic Harnack inequality (9). J. Math. Pures Appl. 75(3), 273–297 (1996)

    MathSciNet  MATH  Google Scholar 

  34. Telcs, A.: Diffusive limits on the Penrose tiling. J. Stat. Phys. 141, 661–668 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Trebin, H.-R. (ed.): Quasicrystals—Structure and Physical Properties. Wiley, Weinheim (2003)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from DFG. D.L. would also like to thank Peter Stollmann and Ivan Veselić for delightful discussions on quantum graphs. X.H. was partially supported by The Startup Foundation for Introducing Talent of NUIST (Grant No. 2015r053) and NSFC (Grant No. 11601238). F.P. was supported in part by a Technion Fine fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Lenz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haeseler, S., Huang, X., Lenz, D. et al. Diffusion on Delone sets. J Stat Phys 167, 1496–1510 (2017). https://doi.org/10.1007/s10955-017-1779-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-017-1779-x

Keywords

Navigation