Skip to main content
Log in

On the Generalized Langevin Equation for a Rouse Bead in a Nonequilibrium Bath

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We present the reduced dynamics of a bead in a Rouse chain which is submerged in a bath containing a driving agent that renders it out-of-equilibrium. We first review the generalized Langevin equation of the middle bead in an equilibrated bath. Thereafter, we introduce two driving forces. Firstly, we add a constant force that is applied to the first bead of the chain. We investigate how the generalized Langevin equation changes due to this perturbation for which the system evolves towards a steady state after some time. Secondly, we consider the case of stochastic active forces which will drive the system to a nonequilibrium state. Including these active forces results in an extra contribution to the second fluctuation–dissipation relation. The form of this active contribution is analysed for the specific case of Gaussian, exponentially correlated active forces. We also discuss the resulting rich dynamics of the middle bead in which various regimes of normal diffusion, subdiffusion and superdiffusion can be present.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Brangwynne, C.P., Koenderink, G.H., MacKintosh, F.C., Weitz, D.A.: Nonequilibrium microtubule fluctuations in a model cytoskeleton. Phys. Rev. Lett. 100, 118104 (2008)

    Article  ADS  Google Scholar 

  2. Bronstein, I., Israel, Y., Kepten, E., Mai, S., Shav-Tal, Y., Barkai, E., Garini, Y.: Transient anomalous diffusion of telomores in the nucleus of mammalian cells. Phys. Rev. Lett. 103, 018102 (2009)

    Article  ADS  Google Scholar 

  3. Doi, M., Edwards, S.F.: The Theory of Polymer Dynamics. Oxford University, New York (1986)

    Google Scholar 

  4. Fodor, E., Guo, M., Gov, N.S., Visco, P., Weitz, D.A., van Wijland, F.: Activity-driven fluctuations in living cells. Europhys. Lett. 110, 48005 (2015)

    Article  ADS  Google Scholar 

  5. Kaiser, A., Löwen, H.: Unusual swelling of a polymer in a bacterial bath. J. Chem. Phys. 141, 044903 (2014)

    Article  ADS  Google Scholar 

  6. Langevin, P.: Sur la théorie du mouvement brownien. CR Acad. Sci. Paris 146, 530 (1908)

    MATH  Google Scholar 

  7. Levine, A.J., MacKintosh, F.C.: The mechanics and fluctuation spectrum of active gels. J. Phys. Chem. B 113, 3820 (2009)

    Article  Google Scholar 

  8. Maes, C.: On the second fluctuation–dissipation theorem for nonequilibrium baths. J. Stat. Phys. 154, 705 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Maes, C., Steffenoni, S.: Friction and noise for a probe in a nonequilibrium fluid. Phys. Rev. E 91, 022128 (2015)

    Article  ADS  Google Scholar 

  10. Nikola, N., Solon, A.P., Kafri, Y., Kardar, M., Tailleur, J., Voituriez, R.: Active particles with soft and curved walls: equation of state, ratchets, and instabilities. Phys. Rev. Lett. 117(9), 098001 (2016)

    Article  ADS  Google Scholar 

  11. Osmanovic, D., Rabin, Y.: Active Rouse chains. arXiv:1608.05914

  12. Panja, D.: Generalized Langevin equation formulation for anomalous polymer dynamics. J. Stat. Mech. L02001 (2010)

  13. Phillips, R., Kondev, J., Theriot, J., Garcia, H.G.: Physical Biology of the Cell. Garland Science, New York (2013)

    Google Scholar 

  14. Robert, D., Nguyen, T.-H., Gallet, F., Wilhelm, C.: In vivo determination of fluctuating forces during endosome trafficking using a combination of active and passive microrheology. PLoS One 5, e10046 (2010)

    Article  ADS  Google Scholar 

  15. Rouse Jr., P.E.: A theory of the linear viscoelastic properties of dilute solutions of coiling polymers. J. Chem. Phys. 21, 272 (1953)

    Article  Google Scholar 

  16. Sakaue, T.: Memory effect and fluctuating dynamics of a tagged monomer. Phys. Rev. E 87, 040601 (2013)

    Article  ADS  Google Scholar 

  17. Sakaue, T., Saito, T.: Active diffusion of model chromosomal loci driven by athermal noise. Soft Matter 13, 81 (2017)

    Article  Google Scholar 

  18. Samanta, N., Chakrabarti, R.: Chain reconfiguration in active noise. J. Phys. A: Math. Theor. 49, 195601 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Shin, J., Cherstvy, A.G., Kim, W.K., Metzler, R.: Facilitation of polymer looping and giant polymer diffusivity in crowded solutions of active particles. New J. Phys. 17, 115008 (2015)

    Article  Google Scholar 

  20. Sonn-Segev, A., Bernheim-Groswasser, A., Roichman, Y.: Scale dependence of mechanics and dynamics of active gels with increasing motor concentration (2016). arXiv:1609.04163

  21. Vandebroek, H., Vanderzande, C.: Dynamics of a polymer in an active and viscoelastic bath. Phys. Rev. E 92, 060601 (2015)

    Article  ADS  Google Scholar 

  22. Vandebroek, H., Vanderzande, C.: Transient behaviour of a polymer dragged through a viscoelastic medium. J. Chem. Phys. 141, 114910 (2014)

    Article  ADS  Google Scholar 

  23. Vandebroek, H., Vanderzande, C.: The effect of active fluctuations on the dynamics of particles, motors and hairpins, preprint (2016)

  24. Vandebroek, H.: Nonequilibrium Dynamics in an Active Viscoelastic Bath: Particles and Polymers, Ph.D. Thesis, Hasselt University (2016)

  25. Weber, S.C., Spakowitz, A.J., Theriot, J.A.: Bacterial chromosomal loci move subdiffusively through a viscoelastic cytoplasm. Phys. Rev. Lett. 104, 238102 (2010)

    Article  ADS  Google Scholar 

  26. Zwanzig, R.: Nonequilibrium Statistical Mechanics. Oxford University Press, Oxford (2001)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Vanderzande.

Appendix

Appendix

In this appendix we give a brief outline of our calculations. For more details we refer to chapter 6 of [24]. We consider a Rouse chain with \(N=2M+1\) beads. Their position vectors obey the equation of motion (1). We will denote the position of the middle bead by \(\mathbf {r}(t)=\mathbf {R}_{M+1}(t)\).

In order to derive the equation of motion for the middle bead, we introduce left and right normal coordinates \(\mathbf {X}_p^L(t)\) and \(\mathbf {X}_p^R(t)\) (\(p=1,2,\ldots ,M\)), which are defined as

$$\begin{aligned} \mathbf {X}_p^L(t)= & {} \frac{2}{\sqrt{N}} \sum _{n=1}^M C_n^p \, \mathbf {R}_n(t), \end{aligned}$$
(21)
$$\begin{aligned} \mathbf {X}_p^R(t)= & {} - \frac{2}{\sqrt{N}} \sum _{n=M+2}^N C_n^p \, \mathbf {R}_n(t), \end{aligned}$$
(22)

where the transformation coefficients \(C_n^p\) are given by

$$\begin{aligned} C_n^p = \cos \left( \frac{2p-1}{N} \left( n-\frac{1}{2}\right) \pi \right) . \end{aligned}$$

A long but straightforward calculation shows that these normal coordinates obey the following equations of motion

$$\begin{aligned} \gamma \, \dot{\mathbf {X}}_p^L(t)= & {} -k \lambda _p \mathbf {X}_p^L(t) - (-1)^p \frac{2k}{\sqrt{N}} S_p\, \mathbf {r}(t) + \mathbf {f}_p^L(t), \end{aligned}$$
(23)
$$\begin{aligned} \gamma \, \dot{\mathbf {X}}_p^R(t)= & {} -k \lambda _p \mathbf {X}_p^R(t) - (-1)^p \frac{2k}{\sqrt{N}} S_p\, \mathbf {r}(t) + \mathbf {f}_p^R(t), \end{aligned}$$
(24)

with \(\lambda _p = 4 \sin ^2 \left( (2p-1)\pi /2N\right) \), \(S_p =\sin ((2p-1)\pi /N)\) and

$$\begin{aligned} \mathbf {f}_p^L(t)= & {} \frac{2}{\sqrt{N}} \sum _{n=1}^M C_n^p\, \mathbf {\xi }_{T,n} (t), \end{aligned}$$
(25)
$$\begin{aligned} \mathbf {f}_p^R(t)= & {} -\frac{2}{\sqrt{N}} \sum _{n=M+2}^N C_n^p\, \mathbf {\xi }_{T,n}(t). \end{aligned}$$
(26)

The differential Eqs. (23) and (24) are uncoupled, linear and nonhomogeneous. They can therefore be solved immediately. Inverting (21) and (22), we can write the positions of the beads in terms of the normal coordinates. This gives (for \(n=1,2,\ldots ,M\) and \(m=M+2,M+3,\ldots ,N\))

$$\begin{aligned} \mathbf {R}_n(t)= & {} \frac{2}{\sqrt{N}} \sum _{p=1}^M C_n^p\, \mathbf {X}_p^L(t), \end{aligned}$$
(27)
$$\begin{aligned} \mathbf {R}_m(t)= & {} -\frac{2}{\sqrt{N}} \sum _{p=1}^M C_m^p\, \mathbf {X}_p^R(t). \end{aligned}$$
(28)

Using these expressions one can easily show that the position of the middle bead evolves according to

$$\begin{aligned} \gamma \, \dot{\mathbf {r}}(t) = \mathbf {\xi }_T (t) - 2k \mathbf {r}(t) - \frac{2k}{\sqrt{N}} \sum _{p=1}^M (-1)^p S_p \Big ( \mathbf {X}_p^L (t) + \mathbf {X}_p^R (t)\Big ). \end{aligned}$$
(29)

Inserting the solutions of (23) and (24) gives for the equation of motion of the tagged middle bead

$$\begin{aligned} \gamma \, \dot{\mathbf {r}}(t)= & {} \mathbf {\xi }_T(t) - 2k\mathbf {r}(t) - \frac{2k}{\sqrt{N}} \sum _{p=1}^M (-1)^p S_p \Bigg [ \Big ( \mathbf {X}_p^L(0) + \mathbf {X}_p^R(0)\Big ) e^{-t/\tau _p} \nonumber \\&\quad +\,\frac{1}{\gamma } \int _0^t d\tau \Big ( \mathbf {f}^L_p(\tau ) + \mathbf {f}^R_p(\tau ) \Big ) e^{(\tau -t)/\tau _p} - (-1)^p \frac{4k}{\gamma \sqrt{N}} S_p \int _0^t d\tau \ \mathbf {r}(\tau )e^{(\tau -t)/\tau _p} \Bigg ]. \nonumber \\ \end{aligned}$$
(30)

The last integral can be rewritten using integration by parts

$$\begin{aligned} \int _0^t d\tau \ \mathbf {r}(\tau )e^{(\tau -t)/\tau _p}=\tau _p \mathbf {r}(t) - \tau _p \mathbf {r}(0)e^{-t/\tau _p} - \tau _p \int _0^t d\tau \ e^{(\tau -t)/\tau _p} \,\dot{\mathbf {r}}(\tau ). \end{aligned}$$

When we put this back into the equation of motion, we can group some terms and identify them in the context of the generalized Langevin equation. We finally get

$$\begin{aligned} \gamma \, \dot{\mathbf {r}}(t) = \mathbf {\xi }_T(t) - \int _0^t d\tau \, K(t-\tau )\, \dot{\mathbf {r}}(\tau ) + \mathbf {\Phi }(t), \end{aligned}$$
(31)

where the memory kernel equals

$$\begin{aligned} K(t) = \frac{8 k^2}{\gamma N} \sum _{p=1}^M \tau _p S_p^2\, e^{-t/\tau _p}, \end{aligned}$$
(32)

and the effective noise is given by

$$\begin{aligned} \mathbf {\Phi }(t) = - \frac{2k}{\sqrt{N}} \sum _{p=1}^N (-1)^p S_p\, e^{-t/\tau _p} \Bigg [ \mathbf {X}_p^L(0) + \mathbf {X}_p^R(0)+ & {} (-1)^p \frac{4k}{\sqrt{N}} \tau _p S_p\, \mathbf {r}(0) \nonumber \\+ & {} \frac{1}{\gamma } \int _0^t d \tau \, \Big ( \mathbf {f}_p^L(\tau ) + \mathbf {f}_p^R (\tau ) \Big ) e^{\tau /\tau _p} \Bigg ].\nonumber \\ \end{aligned}$$
(33)

From this definition and the relations (25) and (26), it can be seen \(\mathbf {\Phi }(t)\) is a Gaussian random variable. Long yet straightforward calculations can show that the average of this random variable is zero and that its correlation is given by relation (4).

When active forces \(\mathbf {\xi }_{A,n}(t)\) are added, the calculation proceeds along the same line. The main difference is that the functions \(\mathbf {f}_p^L(t)\) and \(\mathbf {f}_p^R(t)\) are modified to include the active forces. The definitions (25) and (26) are now replaced by

$$\begin{aligned} \mathbf {f}_p^L(t)= & {} \frac{2}{\sqrt{N}} \sum _{n=1}^M C_n^p\, \Big ( \mathbf {\xi }_{T,n} (t) + \mathbf {\xi }_{A,n} (t)\Big ), \end{aligned}$$
(34)
$$\begin{aligned} \mathbf {f}_p^R(t)= & {} -\frac{2}{\sqrt{N}} \sum _{n=M+2}^N C_n^p\, \Big ( \mathbf {\xi }_{T,n}(t) + \mathbf {\xi }_{A,n} (t)\Big ). \end{aligned}$$
(35)

With this modified definition, the equations of motion of the normal coordinates are still given by (23) and (24) and the equation of motion of the tagged particles is still given by (30). As a result the memory kernel K(t) is not modified. The only difference is that the extra terms due to the active forces in (34) and (35) will lead to a different form for the effective noise correlation. Another calculation then leads to the results for the noise correlation given in the main text, i.e. the expressions (9) and (10).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vandebroek, H., Vanderzande, C. On the Generalized Langevin Equation for a Rouse Bead in a Nonequilibrium Bath. J Stat Phys 167, 14–28 (2017). https://doi.org/10.1007/s10955-017-1734-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-017-1734-x

Keywords

Navigation