Skip to main content
Log in

Temporal Diffusion: From Microscopic Dynamics to Generalised Fokker–Planck and Fractional Equations

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The temporal Fokker–Planck equation (Boon et al. in J Stat Phys 3/4: 527, 2003) or propagation–dispersion equation was derived to describe diffusive processes with temporal dispersion rather than spatial dispersion as in classical diffusion. We present two generalizations of the temporal Fokker–Planck equation for the first passage distribution function \(f_j(r,t)\) of a particle moving on a substrate with time delays \(\tau _j\). Both generalizations follow from the first visit recurrence relation. In the first case, the time delays depend on the local concentration, that is the time delay probability \(P_j\) is a functional of the particle distribution function and we show that when the functional dependence is of the power law type, \(P_j \propto f_j^{\nu - 1}\), the generalized Fokker–Planck equation exhibits a structure similar to that of the nonlinear spatial diffusion equation where the roles of space and time are reversed. In the second case, we consider the situation where the time delays are distributed according to a power law, \(P_j \propto \tau _j^{-1-\alpha }\) (with \(0< \alpha < 2\)), in which case we obtain a fractional propagation-dispersion equation which is the temporal analog of the fractional spatial diffusion equation (with space and time interchanged). The analysis shows how certain microscopic mechanisms can lead to non-Gaussian distributions and non-classical scaling exponents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Boon, J.P., Grosfils, P., Lutsko, J.F.: Temporal diffusion. Europhys. Lett. 63, 186 (2003)

    Article  ADS  Google Scholar 

  2. Boon, J.P., Grosfils, P., Lutsko, J.F.: Propagation-dispersion equation. J. Stat. Phys. 3/4, 527 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Einstein, A.: Un the movement of small particles suspended in statiunary liquids required by the molecular-kinetic theory 0f heat. Ann. Phys. 17, 549 (1905)

    Article  Google Scholar 

  4. Ippolito, I., et al.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Eur. Phys. J. E 3, 227 (2000)

    Article  Google Scholar 

  5. Metzler, R., Klafter, J.: Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. Phys. Rep. 339, 1–77 (2000)

    Article  ADS  Google Scholar 

  6. Metzler, R., Jeon, J., Cherstvy, A.G., Barkai, E.: Phys. Chem. Chem. Phys. 16, 24128–24164 (2014)

    Article  Google Scholar 

  7. Redner, S.: A Guide to First-Passage Processes. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

  8. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1965)

    MATH  Google Scholar 

  9. Enescu, B., Struzik, Z., Kiyono, K.: On the recurrence time of earthquakes: insight from Vrancea (Romania) intermediate-depth events. Geophys. J. Int. 110, 59001 (2015)

    Google Scholar 

  10. Suzuki, N., Abe, S.: Anomalous diffusion of volcanic earthquakes. Euro. Phys. Lett. 110, 59001 (2015)

    Article  ADS  Google Scholar 

  11. Succi, S., Iacono, R.: Similarity solutions of the one-dimensional Fokker-Planck equation. Phys. Rev. A 33(6), 4419 (1986)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Pierre Boon.

Appendices

Appendix 1: Expansion of the Recurrence Relation

We first consider the expansion of \(F_{j}^{(\nu )}\left[ f\right] \) (for simplicity in the notation we shall omit the upper index \({(\nu )}\) which will be reintroduced when necessary):

$$\begin{aligned}&F_{j}\left[ f\right] = \left\{ F_{j}\left( x;y_{1}\ldots ,y_{N}\right) \right\} _{f} \nonumber \\- & {} \delta t\left\{ j\frac{\partial F_{j}\left( x;y_{1}\ldots ,y_{N}\right) }{ \partial x}+\sum _{l=1}^{N}l\frac{\partial F_{j}\left( x;y_{1}\ldots ,y_{N}\right) }{\partial y_{l}}\right\} _{f} \times \left( \frac{\partial f\left( r, t\right) }{\partial t} \right) +\ldots \qquad \end{aligned}$$
(36)

where the notation \(\left\{ \ldots \right\} _{f}\) means that all the variables \( x,y_{1},\ldots \) are to be set equal to the \(f\left( r,t\right) \)’s in the r.h.s. of Eq. (5). Using this expansion, the generalized recurrence relation (6) becomes

$$\begin{aligned}&\delta r\frac{\partial f\left( r,t\right) }{\partial r} + \frac{1}{2}\left( \delta r\right) ^{2}\frac{\partial ^{2}f\left( r,t\right) }{\partial r^{2}}+\ldots = \nonumber \\&\quad - \delta t\sum _{j=1}^{N}jp_{j}\left\{ F_{j}\left( x;y_{1}\ldots ,y_{N}\right) \right\} _{f}\frac{\partial f\left( r,t\right) }{ \partial t} \nonumber \\&\quad + \frac{1}{2}\left( \delta t\right) ^{2}\sum _{j=1}^{N}jp_{j}\left\{ F_{j}\left( x;y_{1}\ldots ,y_{N}\right) \right\} _{f}\frac{\partial ^{2}f\left( r,t\right) }{\partial t^{2}} \nonumber \\&\quad + \left( \delta t\right) ^{2}\sum _{j=1}^{N}jp_{j}\left\{ j\frac{\partial F_{j}\left( x;y_{1}\ldots ,y_{N}\right) }{\partial x}+\sum _{l=1}^{N}l\frac{ \partial F_{j}\left( x;y_{1}\ldots ,y_{N}\right) }{\partial y_{l}}\right\} _{f}\left( \frac{\partial f\left( r,t\right) }{\partial t}\right) ^{2} +\ldots \nonumber \\ \end{aligned}$$
(37)

We now perform a multiscale expansion with

$$\begin{aligned} \frac{\partial }{\partial r} \rightarrow \epsilon \frac{\partial }{\partial {r_1}} \,+\,\epsilon ^2 \frac{\partial }{\partial {r_2}} \;\;\; ;\;\;\; \frac{\partial }{\partial t} \rightarrow \epsilon \frac{\partial }{\partial {t_1}} \,+\,\epsilon ^2 \frac{\partial }{\partial {t_2}}, \end{aligned}$$
(38)

and \(f\,=\,f^{(0)}\,+\,\epsilon f^{(1)}\,+\,\,\mathcal{O}(\epsilon ^2)\), where \(f^{(0)}\) is the distribution function in the absence of dispersion. To first order, we obtain

$$\begin{aligned} \mathcal{O}(\epsilon ^{1}) : \;\;\;\;\;\; \delta r\frac{\partial f^{(0)}\left( r,t\right) }{\partial r_{1}}=-\delta t \sum _{j=1}^{N}jp_{j}\left\{ F_{j}\left( x;y_{1}\ldots ,y_{N}\right) \right\} _{f^{(0)}}\frac{\partial f^{(0)}\left( r,t\right) }{\partial t_{1}}, \end{aligned}$$
(39)

and to second order

$$\begin{aligned}&\mathcal{O}(\epsilon ^{2}) : \;\;\;\;\;\; \delta r\frac{\partial f^{(1)}\left( r,t\right) }{\partial r_{1}}+ \delta r\frac{\partial f^{(0)}\left( r,t\right) }{\partial r_{2}}+\frac{1}{2}\left( \delta r\right) ^{2}\frac{\partial ^{2}f^{(0)}\left( r,t\right) }{\partial r_{1}^{2}} \nonumber \\&\quad = -\delta t\sum _{j=1}^{N} j p_{j}\left\{ \frac{\partial F_{j}\left( x;y_{1}\ldots ,y_{N}\right) }{\partial x}+\sum _{l=1}^{N} \frac{\partial F_{j}\left( x;y_{1}\ldots ,y_{N}\right) }{\partial y_{l}}\right\} _{f^{(0)}} f^{(1)}\left( r,t\right) \frac{\partial f^{(0)}\left( r,t\right) }{\partial t_{1}} \nonumber \\&\qquad - \delta t\sum _{j=1}^{N}jp_{j}\left\{ F_{j}\left( x;y_{1}\ldots ,y_{N}\right) \right\} _{f} \left( \frac{\partial f^{(1)}\left( r,t\right) }{\partial t_{1}} +\frac{\partial f^{(0)}\left( r,t\right) }{\partial t_{2}} \right) \nonumber \\&\qquad + \frac{1}{2}\left( \delta t\right) ^{2}\sum _{j=1}^{N}j^{2}p_{j}\left\{ F_{j}\left( x;y_{1}\ldots ,y_{N}\right) \right\} _{f}\frac{\partial ^{2}f^{(0)}\left( r,t\right) }{\partial t_{1}^{2}} \nonumber \\&\qquad + \left( \delta t\right) ^{2}\sum _{j=1}^{N}jp_{j}\left\{ j\frac{\partial F_{j}\left( x;y_{1}\ldots ,y_{N}\right) }{\partial x}+\sum _{l=1}^{N}l\frac{ \partial F_{j}\left( x;y_{1}\ldots ,y_{N}\right) }{\partial y_{l}}\right\} _{f^{(0)}}\left( \frac{\partial f^{(0)}\left( r,t\right) }{\partial t_{1}} \right) ^{2}.\nonumber \\ \end{aligned}$$
(40)

From the normalization condition (with (7) where \(\frac{\partial f\left( r,t\right) }{\partial t}\) is unconstrained)

$$\begin{aligned} 1= & {} \sum _{j=1}^{N}p_{j}\left\{ F_{j}\left( x;y_{1}\ldots ,y_{N}\right) \right\} _{f^{(0)}} \,, \nonumber \\ 0= & {} \sum _{j=1}^{N}p_{j}\left\{ j\frac{\partial F_{j}\left( x;y_{1}\ldots ,y_{N}\right) }{\partial x}+\sum _{l=1}^{N}l\frac{\partial F_{j}\left( x;y_{1}\ldots ,y_{N}\right) }{\partial y_{l}}\right\} _{f^{(0)}}. \end{aligned}$$
(41)

It is easy, for instance, to check that these relations are indeed verified in the case of the power law (4). Differentiating (39) with respect to \(r_1\) and reinserting (39) in the result, we obtain

$$\begin{aligned}&\left( \delta r\right) ^{2}\frac{\partial ^{2}f^{(0)}\left( r,t\right) }{\partial r_{1}^{2}} = -\delta r\delta t\sum _{j=1}^{N}jp_{j}\left\{ F_{j}\left( x;y_{1}\ldots ,y_{N}\right) \right\} _{f^{(0)}}\frac{\partial ^{2}f^{(0)}\left( r,t\right) }{\partial t_{1}\partial r_{1}} \nonumber \\&\quad = \left( \delta t\right) ^{2}\sum _{j=1}^{N}jp_{j}\left\{ F_{j}\left( x;y_{1}\ldots ,y_{N}\right) \right\} _{f^{(0)}}\frac{\partial }{\partial t_{1}} \left\{ \sum _{l=1}^{N}lp_{l}F_{l}\left( x;y_{1}\ldots ,y_{N}\right) \right\} _{f^{(0)}}\frac{\partial f^{(0)}\left( r,t\right) }{\partial t_{1}} \nonumber \\&\quad = \left( \delta t\right) ^{2}\sum _{j=1}^{N}jp_{j}\left\{ F_{j}\left( x;y_{1}\ldots ,y_{N}\right) \right\} _{f^{(0)}} \times \nonumber \\&\quad \quad \times \sum _{l=1}^{N}lp_{l} \left\{ \frac{\partial F_{l}\left( x;y_{1}\ldots ,y_{N}\right) }{\partial x}+\sum _{k=1}^{N}\frac{\partial F_{l}\left( x;y_{1}\ldots ,y_{N}\right) }{\partial y_{k}}\right\} _{f^{(0)}} \left( \frac{\partial f^{(0)}\left( r,t\right) }{\partial t_{1}}\right) ^{2} \nonumber \\&\quad \quad + \left( \delta t\right) ^{2}\left( \sum _{j=1}^{N}jp_{j}\left\{ F_{j}\left( x;y_{1}\ldots ,y_{N}\right) \right\} _{f^{(0)}}\right) ^{2}\frac{\partial ^{2}f^{(0)}\left( r,t\right) }{\partial t_{1}^{2}}. \end{aligned}$$
(42)

Using this result in (40) gives

$$\begin{aligned}&\delta r\frac{\partial f^{(1)}\left( r,t\right) }{\partial r_{1}}+\delta r \frac{\partial f^{(0)}\left( r,t\right) }{\partial r_{2}} \nonumber \\&\quad = -\delta t\sum _{j=1}^{N}jp_{j}\left\{ F_{j}\left( x;y_{1}\ldots ,y_{N}\right) \right\} _{f^{(0)}}\ \left( \frac{\partial f^{(1)}\left( r,t\right) }{\partial t_{1}} + \frac{\partial f^{(0)}\left( r,t\right) }{\partial t_{2}} \right) \nonumber \\&\quad \quad - \delta t\sum _{j=1}^{N} j p_{j}\left\{ \frac{\partial F_{j}\left( x;y_{1}\ldots ,y_{N}\right) }{\partial x}+\sum _{l=1}^{N} \frac{\partial F_{j}\left( x;y_{1}\ldots ,y_{N}\right) }{\partial y_{l}}\right\} _{f^{(0)}} f^{(1)}\left( r,t\right) \frac{\partial f^{(0)}\left( r,t\right) }{\partial t_{1}} \nonumber \\&\quad \quad + \frac{1}{2}\left( \delta t\right) ^{2}\left( \sum _{j=1}^{N}j^{2}p_{j}\left\{ F_{j}\left( x;y_{1}\ldots ,y_{N}\right) \right\} _{f^{(0)}}-\left( \sum _{j=1}^{N}jp_{j}\left\{ F_{j}\left( x;y_{1}\ldots ,y_{N}\right) \right\} _{f^{(0)}}\right) ^{2}\right) \frac{ \partial ^{2}f^{(0)}\left( r,t\right) }{\partial t_{1}^{2}} \nonumber \\&\quad \quad + \left( \delta t\right) ^{2}\left( \begin{array}{c} \sum _{j=1}^{N}jp_{j}\left\{ j\frac{\partial F_{j}\left( x;y_{1}\ldots ,y_{N}\right) }{\partial x}+\sum _{l=1}^{N}l\frac{\partial F_{j}\left( x;y_{1}\ldots ,y_{N}\right) }{\partial y_{l}}\right\} _{f^{(0)}} \nonumber \\ -\sum _{j=1}^{N}jp_{j}\left\{ F_{j}\left( x;y_{1}\ldots ,y_{N}\right) \right\} _{f^{(0)}} \sum _{l=1}^{N}lp_{l}\left\{ \frac{\partial F_{l}\left( x;y_{1}\ldots ,y_{N}\right) }{\partial x}+\sum _{k=1}^{N} \frac{\partial F_{l}\left( x;y_{1}\ldots ,y_{N}\right) }{\partial y_{k}}\right\} _{f^{(0)}} \end{array} \right) \nonumber \\&\quad \quad \times \left( \frac{\partial f^{(0)}\left( r,t\right) }{\partial t_{1}} \right) ^{2}, \end{aligned}$$
(43)

After recombining first and second order terms, resummation yields Eq. (9).

Appendix 2: General Confluent Equation

$$\begin{aligned} \frac{d^{2}w}{dx^{2}}+x\frac{dw}{dx}+\left( 2\nu - 1 \right) w=0 , \end{aligned}$$
(44)

From AS 13.1.35 in [8], the general confluent equation is

$$\begin{aligned} 0= & {} w^{\prime \prime }+\left( \frac{2a}{y}+2f^{\prime }(y)+\frac{bh^{\prime }(y)}{h(y)}-h^{\prime }(y)-\frac{h^{\prime \prime }(y)}{h^{\prime }(y)} \right) w^{\prime } \nonumber \\&\quad + \left( \frac{bh^{\prime }(y)}{h(y)}-h^{\prime }(y)-\frac{h^{\prime \prime }(y)}{h^{\prime }(y)}\right) \left( \frac{a}{y}+f^{\prime }(y)\right) w \nonumber \\&\quad + \left( \frac{a(a-1)}{y^{2}}+\frac{2af^{\prime }(y)}{y}+f^{\prime \prime }(y)+f^{\prime 2}(y)-\frac{c h^{\prime 2}(y)}{h(y)}\right) w. \end{aligned}$$
(45)

This equation and Eq. (44) match provided

$$\begin{aligned} a = 0 \;\;\;;\;\;\;\; b = \frac{1}{2} \;\;\;;\;\;\;\; c = 1 - {\nu } \;\;\;;\;\;\;\; f(y) = h(y)=\frac{y^{2}}{2}, \end{aligned}$$

and the general solution then is

$$\begin{aligned} w\left( y\right) =A\exp \left( -\frac{y^{2}}{2}\right) M\left( {1 - \nu },\frac{1}{2},\frac{y^{2}}{2}\right) +B\exp \left( -\frac{y^{2}}{2}\right) U\left( 1 - {\nu },\frac{1}{2},\frac{y^{2}}{2}\right) , \end{aligned}$$
(46)

or, using AS 13.1.3 in [8], with \(y \equiv x\),

$$\begin{aligned} w\left( x\right) = {A}\,\left[ M\left( {1 - {\nu }},\frac{1}{2},\frac{x^{2}}{2}\right) +x \,\frac{B}{A}\, M\left( \frac{3}{2}- {\nu },\frac{3}{2},\frac{x^{2}}{2}\right) \right] \exp \left( -\frac{x^{2}}{2}\right) . \end{aligned}$$
(47)

Note that \(w\left( 0\right) = A \) and \(w^{\prime }\left( 0\right) =~B \).

Appendix 3: Derivation of the Fractional Temporal Diffusion Equation

The probability for \(\hat{t} =T_{\alpha }\) is

$$\begin{aligned} f_{\alpha }(T_{\alpha },N)&= \int _{0}^{\infty } \delta (T_{\alpha }-\frac{1}{N^{1/\alpha }}\sum _{i=1}^{N}t_{i})p(t_{1})\ldots p(t_{N})dt_{1}\ldots dt_{N} \end{aligned}$$
(48)

so that

$$\begin{aligned} \tilde{f}_{\alpha }(\omega ,N) \equiv \int _{-\infty }^{\infty } e^{i \omega T}f_{\alpha }(T_{\alpha }) = \left( \tilde{p}\left( \frac{\omega }{N^{1/\alpha }}\right) \right) ^N , \end{aligned}$$
(49)

where a simple calculation gives

$$\begin{aligned} \tilde{p}(\omega ) = \alpha (-i\omega t_{0})^{\alpha }\Gamma (-\alpha ,-i \omega t_{0}) , \end{aligned}$$
(50)

which has the expansion for small \(\omega t_{0}\)

$$\begin{aligned} \tilde{p}(\omega ) = \alpha (-i\omega t_{0})^{\alpha }\Gamma (-\alpha )-\alpha \sum _{k=0}^{\infty }\frac{(-i \omega t_{0})^{k}}{k!(k-\alpha )}. \end{aligned}$$
(51)

Thus, taking the inverse Fourier transform and expanding in 1 / N leads to the result

$$\begin{aligned}&f_{\alpha }(T_{\alpha },N) = \int _{-\infty }^{\infty } \left( \tilde{p}\left( \frac{\omega }{N^{1/\alpha }}\right) \right) ^N e^{-i \omega T_{\alpha }} \frac{d\omega }{2\pi } \nonumber \\= & {} \int _{-\infty }^{\infty } \exp \left( -i \omega T_{\alpha }+N \ln \tilde{p}\left( \frac{\omega }{N^{1/\alpha }}\right) \right) \frac{d\omega }{2\pi } \nonumber \\= & {} \int _{-\infty }^{\infty } \exp \left( -i \omega T_{\alpha } +\alpha \left( -i \omega t_{0}\right) ^{\alpha } \Gamma (-\alpha ) + \frac{\alpha }{1-\alpha } (-i \omega t_{0})N^{1-1/\alpha } \right) \nonumber \\&\times \; \exp \left( \mathcal{{O}}(N^{1-2/\alpha })\right) \frac{d\omega }{2\pi }, \end{aligned}$$
(52)

so that the higher order terms are negligible for large N provided \(\alpha < 2\). The probability density that the first arrival time to reach position N is \(T = N^{1/\alpha }T_{\alpha }\) is therefore

$$\begin{aligned}&f(T,N) = \int _{0}^{\infty } f_{\alpha }(T_{\alpha },N)\delta (T-N^{1/\alpha }T_{\alpha }) dT_{\alpha } \\&\quad = N^{-1/\alpha }\int _{-\infty }^{\infty } \exp \left( -i \omega N^{1-1/\alpha } \left( \frac{T}{N} + \frac{\alpha }{1-\alpha } t_{0}\right) \right) \\&\quad \quad \times \exp \left( \alpha \left( -i \omega t_{0}\right) ^{\alpha } \Gamma (-\alpha ) +\mathcal{{O}}(N^{1-2/\alpha })\right) \frac{d\omega }{2\pi }. \end{aligned}$$

Rescaling the integration variable gives

$$\begin{aligned} f(T,N)= & {} \int _{-\infty }^{\infty } exp\left( i \omega \left( T + \frac{\alpha }{1-\alpha } t_{0} N\right) +\alpha \left( i \omega t_{0}\right) ^{\alpha } \Gamma (-\alpha )N\right) \frac{d\omega }{2\pi } \end{aligned}$$
(53)

which is the Levy-stable distribution with stability parameter \(\alpha \). Defining the spatial variable \(r \equiv N \delta r\), it is easy to see that this distribution satisfies the fractional temporal diffusion equation

$$\begin{aligned} \frac{\partial }{\partial r}f\left( T;r/\delta r\right) = \left[ \frac{\alpha t_{0}}{(1-\alpha ) \delta r}\frac{\partial }{\partial T}+\frac{{\alpha }t_{0}^{\alpha }}{ \delta r} \Gamma \left( -\alpha \right) \frac{\partial ^{\alpha }}{\partial T^{\alpha }}\right] f_{\alpha }\left( T;r/\delta r\right) . \end{aligned}$$
(54)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boon, J.P., Lutsko, J.F. Temporal Diffusion: From Microscopic Dynamics to Generalised Fokker–Planck and Fractional Equations. J Stat Phys 166, 1441–1454 (2017). https://doi.org/10.1007/s10955-017-1716-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-017-1716-z

Keywords

Navigation