Skip to main content
Log in

Amplitude Function of Asymptotic Correlations Along Charged Wall in Coulomb Fluids

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In classical semi-infinite Coulomb fluids, two-point correlation functions exhibit a slow inverse-power law decay along a uniformly charged wall. In this work, we concentrate on the corresponding amplitude function which depends on the distances of the two points from the wall. Recently Šamaj (J Stat Phys 161:227–249 2015), applying a technique of anticommuting variables to a 2D system of charged rectilinear wall with “counter-ions only”, we derived a relation between the amplitude function and the density profile which holds for any temperature. In this paper, using the Möbius conformal transformation of particle coordinates in a disc, a new relation between the amplitude function and the density profile is found for that model. In all exactly solvable cases, the amplitude function factorizes itself in the two distances from the wall. Presupposing this factorization property at any temperature and using specific sum rules for semi-infinite geometries, a relation between the amplitude function of the charge-charge structure function and the charge profile is derived for many-component Coulomb fluids in any dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andelman, D.: Introduction to electrostatics in soft and biological matter. In: Poon, W.C.K., Andelman, D. (eds.) Soft Condensed Matter Physics in Molecular and Cell Biology, vol. 6. Taylor & Francis, New York (2006)

    Google Scholar 

  2. Attard, P., Mitchell, D.J., Ninham, B.W.: Beyond Poisson–Boltzmann: images and correlations in the electric double layer. I. Counterions only. J. Chem. Phys. 88, 4987–4996 (1988)

    Article  ADS  Google Scholar 

  3. Attard, P.: Electrolytes and the electric double layer. Adv. Chem. Phys. XCII, 1–159 (1996)

    Google Scholar 

  4. Blum, L., Henderson, D., Lebowitz, J.L., Gruber, Ch., Martin, Ph.A.: A sum rule for an inhomogeneous electrolyte. J. Chem. Phys. 75, 5974–5975 (1981)

  5. Boroudjerdi, H., Kim, Y.-W., Naji, A., Netz, R.R., Schlagberger, X., Serr, A.: Statics and dynamics of strongly charged soft matter. Phys. Rep. 416, 129–199 (2005)

    Article  ADS  Google Scholar 

  6. Choquard, Ph, Piller, B., Rentsch, R.: On the dielectric susceptibility of classical Coulomb systems. J. Stat. Phys. 43, 197–205 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  7. Choquard, Ph, Piller, B., Rentsch, R.: On the dielectric susceptibility of classical Coulomb systems. II. J. Stat. Phys. 46, 599–633 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  8. Choquard, Ph, Piller, B., Rentsch, R., Vieillefosse, P.: Surface properties of finite classical Coulomb systems: Debye–Hückel approximation and computer simulations. J. Stat. Phys. 55, 1185–1262 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  9. Cornu, F., Jancovici, B.: The electrical double layer: a solvable model. J. Chem. Phys. 90, 2444–2452 (1989)

    Article  ADS  Google Scholar 

  10. dos Santos, A.P., Diehl, A., Levin, Y.: Electrostatic correlations in colloidal suspensions: density profiles and effective charges beyond the Poisson-Boltzmann theory. J. Chem. Phys. 130, 124110 (2009)

    Article  ADS  Google Scholar 

  11. Hansen, J.P., Löwen, H.: Effective interactions between electric double layers. Annu. Rev. Phys. Chem. 51, 209–242 (2000)

    Article  ADS  Google Scholar 

  12. Jancovici, B.: Classical Coulomb systems near a plane wall. I. J. Stat. Phys. 28, 43–65 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  13. Jancovici, B.: Classical Coulomb systems near a plane wall. II. J. Stat. Phys. 29, 263–280 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  14. Jancovici, B.: Surface properties of a classical two-dimensional one-component plasma: exact results. J. Stat. Phys. 34, 803–815 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  15. Jancovici, B.: Inhomogeneous two-dimensional plasmas. In: Henderson, D. (ed.) Inhomogeneous Fluids, pp. 201–237. Dekker, New York (1992)

    Google Scholar 

  16. Jancovici, B.: Classical Coulomb systems: screening and correlations revisited. J. Stat. Phys. 80, 445–459 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Jancovici, B., Šamaj, L.: Charge correlations in a Coulomb system along a plane wall: a relation between asymptotic behavior and dipole moment. J. Stat. Phys. 105, 193–209 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jancovici, B.: Surface correlations for two-dimensional Coulomb fluids in a disc. J. Phys. 14, 9121–9132 (2002)

    Google Scholar 

  19. Mallarino, J.P., Téllez, G., Trizac, E.: Counter-ion density profile around charged cylinders: the strong-coupling needle limit. J. Phys. Chem. B 117, 12702–12716 (2013)

    Article  Google Scholar 

  20. Mallarino, J.P., Téllez, G.: Counter-ion density profile around a charged disc: from the weak to the strong association regime. Phys. Rev. E 91, 062140 (2015)

    Article  ADS  Google Scholar 

  21. Martin, PhA: Sum rules in charged fluids. Rev. Mod. Phys. 60, 1075–1127 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  22. Messina, R.: Electrostatics in soft matter. J. Phys. 21, 113102 (2009)

    MathSciNet  Google Scholar 

  23. Netz, R.R., Orland, H.: Beyond Poisson–Boltzmann: fluctuation effects and correlation functions. Eur. Phys. J. E 1, 203–214 (2000)

    Article  Google Scholar 

  24. Netz, R.R.: Electrostatics of counter-ions at and between planar charged walls: from Poisson–Boltzmann to the strong-coupling theory. Eur. Phys. J. E 5, 557–574 (2001)

    Article  Google Scholar 

  25. Podgornik, R.: An analytic treatment of the first-order correction to the Poisson-Boltzmann interaction free energy in the case of counter-ion only Coulomb fluid. J. Phys. A 23, 275–284 (1990)

    Article  ADS  MATH  Google Scholar 

  26. Šamaj, L., Percus, J.K.: A functional relation among the pair correlations of the two-dimensional one-component plasma. J. Stat. Phys. 80, 811–824 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Šamaj, L.: Microscopic calculation of the dielectric susceptibility tensor for Coulomb fluids. J. Stat. Phys. 100, 949–967 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  28. Šamaj, L.: Is the two-dimensional one-component plasma exactly solvable? J. Stat. Phys. 117, 131–158 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Šamaj, L., Jancovici, B.: Charge and current sum rules in quantum media coupled to radiation II. J. Stat. Phys. 139, 432–453 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Šamaj, L., Trizac, E.: Counterions at highly charged interfaces: from one plate to like-charge attraction. Phys. Rev. Lett. 106, 078301 (2011)

    Article  ADS  Google Scholar 

  31. Šamaj, L., Trizac, E.: Counter-ions at charged walls: two-dimensional systems. Eur. Phys. J. E 34, 20 (2011)

    Article  Google Scholar 

  32. Šamaj, L.: Counter-ions at single charged wall: sum rules. Eur. Phys. J. E 36, 100 (2013)

    Article  Google Scholar 

  33. Šamaj, L., Trizac, E.: Counter-ions between or at asymmetrically charged walls: 2D free-fermion point. J. Stat. Phys. 156, 932–947 (2014)

    Article  ADS  MATH  Google Scholar 

  34. Šamaj, L.: Counter-ions near a charged wall: Exact results for disc and planar geometries. J. Stat. Phys. 161, 227–249 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Shklovskii, B.I.: Screening of a macroion by multivalent ions: Correlation-induced inversion of charge. Phys. Rev. E 60, 5802–5811 (1999)

    Article  ADS  Google Scholar 

  36. Usenko, A.S., Yakimenko, I.P.: Interaction energy of stationary charges in a bounded plasma. Sov. Tech. Phys. Lett. 5, 549–550 (1979)

    Google Scholar 

Download references

Acknowledgments

The support received from Grant VEGA No. 2/0015/15 is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ladislav Šamaj.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Šamaj, L. Amplitude Function of Asymptotic Correlations Along Charged Wall in Coulomb Fluids. J Stat Phys 164, 304–320 (2016). https://doi.org/10.1007/s10955-016-1548-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-016-1548-2

Keywords

Navigation