Skip to main content
Log in

Effects of the Tempered Aging and the Corresponding Fokker–Planck Equation

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

In the renewal processes, if the waiting time probability density function is a tempered power-law distribution, then the process displays a transition dynamics; and the transition time depends on the parameter \(\lambda \) of the exponential cutoff. In this paper, we discuss the aging effects of the renewal process with the tempered power-law waiting time distribution. By using the aging renewal theory, the p-th moment of the number of renewal events \(n_a(t_a, t)\) in the interval \((t_a, t_a+t)\) is obtained for both the weakly and strongly aged systems; and the corresponding surviving probabilities are also investigated. We then further analyze the tempered aging continuous time random walk and its Einstein relation, and the mean square displacement is attained. Moreover, the tempered aging diffusion equation is derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Scher, H., Montroll, E.W.: Anomalous transit-time dispersion in amorphous solids. Phys. Rev. B 12, 2455–2477 (1975)

    Article  ADS  Google Scholar 

  2. Naftaly, A., Edery, Y., Dror, I., Berkowitz, B.: Visualization and analysis of nanoparticle transport and ageing in reactive porous media. J. Hazard. Mater. 299, 513–519 (2015)

    Article  Google Scholar 

  3. Barkai, E., Metzler, R., Klafter, J.: From continuous time random walks to the fractional Fokker–Planck equation. Phys. Rev. E 61, 132–138 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  4. Barkai, E.: CTRW pathways to the fractional diffusion equation. Chem. Phys. 284, 13–27 (2002)

    Article  ADS  Google Scholar 

  5. Shlesinger, M.F.: Asymptotic solutions of continuous-time random walks. J. Stat. Phys. 10, 421–434 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  6. Pfister, G., Scher, H.: Non-Gaussion transient transport in disordered solids. Adv. Phys. 27, 747–798 (1978)

    Article  ADS  Google Scholar 

  7. Klafter, J., Zumofen, G.: Lévy statistics in a Hamiltonian system. Phys. Rev. E 49, 4873–4877 (1994)

    Article  ADS  Google Scholar 

  8. Vardeman, C.F., Gezelter, J.D.: Comparing models for diffusion in supercooled liquids: the eutectic composition of the Ag-Cu alloy. J. Phys. Chem. A 105, 2568–2574 (2001)

    Article  Google Scholar 

  9. Stefani, F.D., Hoogenboom, J.P., Barkai, E.: Beyond quantum jumps: blinking nanoscale light emitters. Phys. Today 62, 34–39 (2009)

    Article  Google Scholar 

  10. Monthus, C., Bouchaud, J.-P.: Models of traps and glass phenomenology. J. Phys. A 29, 3847–3869 (1996)

    Article  ADS  MATH  Google Scholar 

  11. Barkai, E., Cheng, Y.-C.: Aging continuous time random walks. J. Chem. Phys. 118, 6167–6178 (2003)

    Article  ADS  Google Scholar 

  12. Brokmann, X., Hermier, J.-P., Messin, G., Desbiolles, P., Bouchaud, J.P., Dahan, M.: Statistical aging and nonergodicity in the fluorescence of single nanocrystals. Phys. Rev. Lett. 90, 120601 (2003)

    Article  ADS  Google Scholar 

  13. Schulz, J.H.P., Barkai, E., Metzler, R.: Aging effects and population splitting in single-particle trajectory averages. Phys. Rev. Lett. 110, 020602 (2013)

    Article  ADS  Google Scholar 

  14. Mantegna, R.N., Stanley, H.E.: Stochastic process with ultraslow convergence to a Gaussian: the truncated Lévy flight. Phys. Rev. Lett. 73, 2946–2949 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Del-Castillo-Negrete, D.: Truncation effects in superdiffusive front propagation with Lévy flights. Phys. Rev. E 79, 031120 (2009)

    Article  ADS  Google Scholar 

  16. Koponen, I.: Analytic approach to the problem of convergence of truncated Lévy flights towards the Gaussian stochastic process. Phys. Rev. E 52, 1197–1199 (1995)

    Article  ADS  Google Scholar 

  17. Rosiński, J.: Tempering stable processes. Stoch. Process. Appl. 117, 677–707 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Stanislavsky, A., Weron, K., Weron, A.: Diffusion and relaxation controlled by tempered \(\alpha \)-stable processes. Phys. Rev. E 78, 051106 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  19. Baeumer, B., Meerschaert, M.M.: Tempered stable Lévy motion and transient super-diffusion. J. Comput. Appl. Math. 233, 2438–2448 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Meerschaert, M.M., Roy, P., Shao, Q.: Parameter estimation for exponentially tempered power law distributions. Commun. Stat. Theory Methods 41, 1839–1856 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sokolov, I.M., Chechkin, A.V., Klafter, J.: Fractional diffusion equation for a power-law-truncated Lévy process. Physica A 336, 245–251 (2004)

    Article  ADS  Google Scholar 

  22. Meerschaert, M.M., Zhang, Y., Baeumer, B.: Tempered anomalous diffusion in heterogeneous systems. Geophys. Res. Lett. 35, L17403 (2008)

    Article  ADS  Google Scholar 

  23. Allegrini, P., Aquino, G., Grigolini, P., Palatella, L., Rosa, A.: Generalized master equation via aging continuous-time random walks. Phys. Rev. E 68, 056123 (2003)

    Article  ADS  Google Scholar 

  24. Bruno, R., Sorriso-Valvo, L., Carbone, V., Bavassano, B.: A possible truncated-Lévy-flight statistics recovered from interplanetary solar-wind velocity and magnetic-field fluctuations. Europhys. Lett. 66, 146–152 (2004)

    Article  ADS  Google Scholar 

  25. Cairoli, A., Baule, A.: Anomalous processes with general waiting times: functionals and multipoint structure. Phys. Rev. Lett. 115, 110601 (2015)

    Article  ADS  Google Scholar 

  26. Feller, W.: An Introduction to Probability Theory and Its Applications. Wiley, New York (1970)

    MATH  Google Scholar 

  27. Godrèche, C., Luck, J.M.: Statistics of the occupation time of renewal processes. J. Stat. Phys. 104, 489–524 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Schulz, J.H.P., Barkai, E., Metzler, R.: Aging renewal theory and application to random walks. Phys. Rev. X 4, 011028 (2014)

    Google Scholar 

  29. Dyke, P.: An Introduction to Laplace Transforms and Fourier Series. Springer, New York (2014)

    Book  MATH  Google Scholar 

  30. Klafter, J., Sokolov, I.M.: First Steps in Random Walks: From Tools to Applications. Oxford University Press, Oxford (2011)

    Book  MATH  Google Scholar 

  31. Oberhettinger, F., Badii, L.: Tables of Laplace Transform. Springer, Berlin (1973)

    Book  MATH  Google Scholar 

  32. Krüsemann, H., Godec, A., Metzler, R.: First-passage statistics for aging diffusion in systems with annealed and quenched disorder. Phys. Rev. E 89, 040101(R) (2014)

    Article  ADS  Google Scholar 

  33. Cherstvy, A.G., Metzler, R.: Population splitting, trapping, and non-ergodicity in heterogeneous diffusion processes. Phys. Chem. Chem. Phys. 15, 20220–20235 (2013)

    Article  MathSciNet  Google Scholar 

  34. Bertin, E.M., Bouchaud, J.-P.: Linear and nonlinear response in the aging regime of the one-dimensional trap model. Phys. Rev. E 67, 065105(R) (2003)

    Article  ADS  Google Scholar 

  35. Froemberg, D., Barkai, E.: Time-averaged Einstein relation and fluctuating diffusivities for the Lévy walk. Phys. Rev. E 87, 030104(R) (2013)

    Article  ADS  Google Scholar 

  36. Barkai, E.: Strong correlations between fluctuations and response in aging transport. Phys. Rev. E 75, 060104(R) (2007)

    Article  ADS  Google Scholar 

  37. Allegrini, P., Aquino, G., Grigolini, P., Palatella, L., Rosa, A., West, B.J.: Correlation function and generalized master equation of arbitrary age. Phys. Rev. E 71, 066109 (2005)

    Article  ADS  Google Scholar 

  38. Shemer, Z., Barkai, E.: Einstein relation and effective temperature for systems with quenched disorder. Phys. Rev. E 80, 031108 (2009)

    Article  ADS  Google Scholar 

  39. Podlubny, I.: Fractional Differntial Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  40. Meerschaert, M.M., Sikorskii, A.: Stochastic Models for Fractional Calculus. De Gruyter, Berlin (2012)

    MATH  Google Scholar 

  41. Barkai, E.: Aging in subdiffusion generated by a deterministic dynamical system. Phys. Rev. Lett. 90, 104101 (2003)

    Article  ADS  Google Scholar 

  42. Robert, C.P., Casella, G.: Monte Carlo Statistical Methods. Springer, New York (2004)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

The authors thank Eli Barkai for the discussions. This work was supported by the Fundamental Research Funds for the Central Universities under Grant No. lzujbky-2015-77, and the National Natural Science Foundation of China under Grant No. 11271173.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihua Deng.

Appendices

Appendix 1: Generation of Random Variables (Fig. 1)

When generating the random variables with the PDF Eq. (1) to plot Fig. 1, the Monte Carlo statistical methods [42] is used. We first rewrite \(\varphi (t)\) as \(\varphi (t)=H(t)f_1(t)\), where \(f_1(t)=\alpha t_{0}^\alpha t^{-\alpha -1}\) with \(t_0\) being a small number. Denote the maximum of H(x) as M. Then the algorithm can be described as:

  1. 1.

    Generate a r.v. \(x_{f_{1}}\) with PDF \(f_{1}\) and a r.v. \(\xi \) being uniformly distributed in the interval [0, 1].

  2. 2.

    Accept \(x_{f_{1}}\), if \(M\xi \le H(x_{f_{1}})\); otherwise, reject.

  3. 3.

    Return to Step 1.

Fig. 14
figure 14

Time evolution of g(t)

Appendix 2: Mittag-Leffler Function

The two-parameter function of the Mittag-Leffler type plays a very important role in the fractional calculus, being introduced by G.M. Mittag-Leffler and studied by A. Wiman [39]. The two-parameter Mittag-Leffler function is defined by the series expansion

$$\begin{aligned} E_{\alpha ,\beta }=\sum _{k=0}^{\infty } \frac{z^{k}}{\Gamma (\alpha k+\beta )} \end{aligned}$$
(67)

with \(\alpha >0\) and \(\beta >0\). Its one-parameter form (\(\beta =1\)) is given as

$$\begin{aligned} E_{\alpha }=\sum _{k=0}^{\infty } \frac{z^{k}}{\Gamma (\alpha k+1)}. \end{aligned}$$
(68)

The asymptotic expansions of Mittag-Leffler are important for obtaining the various useful estimates of the long time or short time fractional dynamics. For small z, there exists

$$\begin{aligned} E_{\alpha ,\beta }(z) \sim \frac{1}{\Gamma (\beta )}+\frac{z}{\Gamma (\alpha +\beta )}, \end{aligned}$$
(69)

in the special case, \( E_{\alpha }(z) \sim 1+\frac{z}{\Gamma (\alpha +1)}\). Another important and useful formula is the asymptotic expansion of large scale for the Mittag-Leffler function. For \(0<\alpha <2\), \(\beta \) is an arbitrary complex number and \(\mu \) is an arbitrary real number such that \(\pi \alpha /2< \mu < \min \{ \pi , \pi \alpha \}\), then for an arbitrary integer \(p\ge 1\), the following expansion holds,

$$\begin{aligned} E_{\alpha ,\beta }(z) \sim \frac{1}{\alpha }z^{(1-\beta )/\alpha }\exp (z^{1/\alpha })-\sum _{k=1}^{p}\frac{z^{-k}}{\Gamma (\beta -\alpha k)} \end{aligned}$$
(70)

with \(z\rightarrow \infty \) and \(\arg (z) \le \mu \). For \(z\rightarrow +\infty \), from Eq. (70), we have

$$\begin{aligned} E_{\alpha ,\beta }(z) \sim \frac{1}{\alpha }z^{(1-\beta )/\alpha }\exp (z^{1/\alpha }). \end{aligned}$$
(71)

And if \(z\rightarrow -\infty \),

$$\begin{aligned} E_{\alpha ,\beta }(z)\sim -\frac{1}{z \Gamma (\beta -\alpha )}-\frac{1}{z^2 \Gamma (\beta -2\alpha )}; \end{aligned}$$
(72)

when \(\alpha =\beta \), we have \(|\Gamma (0)|\rightarrow \infty \). Therefore \( E_{\alpha ,\alpha }(z)\sim -\frac{1}{z^2 \Gamma (-\alpha )}\).

In the analysis of this paper, we use the following function several times.

$$\begin{aligned} g(z)=z^{\alpha -1}\exp (-\lambda z)E_{\alpha , \alpha }(\lambda ^{\alpha }z^{\alpha }). \end{aligned}$$
(73)

When \(z \rightarrow +\infty \), from (71), there exists

$$\begin{aligned} g(z) \sim \frac{\lambda ^{1-\alpha }}{\alpha }; \end{aligned}$$
(74)

see Fig. 14.

While for \(z \rightarrow 0\), from (69), we have \(g(z) \sim 1/\Gamma (\alpha )z^{\alpha -1}\).

Appendix 3: Laplace Transform of \(\varphi (t)\)

Here we present the Laplace transform of Eq. (1). From the definition of the survival probability on a site, i.e., the probability that the waiting time on a site exceeds t,

$$\begin{aligned} \Psi (t) = \int _{t}^{\infty } \varphi (\tau )d\tau =1-\int _{0}^{t} \varphi (\tau )d\tau . \end{aligned}$$
(75)

Using the definition of incomplete Gamma function, for Eq. (1) we have

$$\begin{aligned} \begin{array}{ll} \Psi (t) &{}\sim \lambda ^\alpha \int _{\lambda t}^{\infty } \exp (-z)z^{-\alpha -1} dz \\ &{} =\lambda ^\alpha \Gamma (-\alpha , \lambda t). \end{array} \end{aligned}$$
(76)

According to the Laplace transform of the incomplete Gamma function \(\mathcal {L}[\Gamma (-\alpha ,\lambda t)]= \Gamma (-\alpha )[1-(\frac{u+\lambda }{\lambda })^\alpha ]/u\) with \(\mathfrak {R}e(-\alpha )>-1\) and \(\Psi (t)\), we have

$$\begin{aligned} \hat{\varphi }(u) \sim 1+\lambda ^\alpha -(u+\lambda )^{\alpha }, \end{aligned}$$
(77)

which can also be obtained by using the Laplace transform of the one side stable law with a shift. From Eq. (77), we have two useful asymptotics. For the long time scale, \(t \gg 1/\lambda \), (i.e., \(u \ll \lambda \)) by the Taylor expansion, we have

$$\begin{aligned} \begin{array}{ll} \hat{\varphi }(u)\sim &{}1-\alpha \lambda ^{\alpha -1}u+\alpha (1-\alpha )\lambda ^{\alpha -2}u^2+\cdots \\ &{}+(-1)^{n+1}(-\alpha )(1-\alpha )\ldots ((n-1)-\alpha )\lambda ^{\alpha -n}u^n. \end{array} \end{aligned}$$
(78)

Notice that \(\hat{\varphi }(0)=1\), so the PDF is normalized. From the definition of \(\langle \tau ^{n} \rangle =\int _{0}^{\infty } \tau ^{n} \psi (\tau )d\tau \), we can get \(\langle \tau \rangle =\alpha \lambda ^{\alpha -1}\), and \(\langle \tau ^2 \rangle =(1-\alpha )(-\alpha )\lambda ^{\alpha -2}\). For the general cases, \(\langle \tau ^n \rangle =-\Gamma (n-\alpha )/\Gamma (-\alpha )\lambda ^{\alpha -n}\), i.e., \(\hat{\varphi }(u) \sim 1-\langle \tau \rangle u+\langle \tau ^2 \rangle u^2+\cdots +(-1)^n\langle \tau ^n \rangle u^n\). For short time scale, \(t_{0}\ll t \ll 1/\lambda \) (i.e. \(u \gg \lambda \)), we have

$$\begin{aligned} \hat{\varphi }(u) \sim 1+u^\alpha \left[ \left( \frac{\lambda }{u}\right) ^\alpha -\left( 1+\frac{\lambda }{u}\right) ^\alpha \right] \sim 1-u^{\alpha }. \end{aligned}$$
(79)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, W., Wang, W., Tian, X. et al. Effects of the Tempered Aging and the Corresponding Fokker–Planck Equation. J Stat Phys 164, 377–398 (2016). https://doi.org/10.1007/s10955-016-1547-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-016-1547-3

Keywords

Navigation