Skip to main content
Log in

Logarithmic, Coulomb and Riesz Energy of Point Processes

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We define a notion of logarithmic, Coulomb and Riesz interactions in any dimension for random systems of infinite charged point configurations with a uniform background of opposite sign. We connect this interaction energy with the “renormalized energy” studied by Serfaty et al. which appears in the free energy functional governing the microscopic behavior of logarithmic, Coulomb and Riesz gases. Minimizers of this functional include the Sine-beta processes in the one-dimensional Log-gas case. Using our explicit expression (inspired by the work of Borodin–Serfaty) we prove their convergence to the Poisson process in the high-temperature limit as well as a crystallization result in the low-temperature limit for one-dimensional systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allez, R., Dumaz, L.: From Sine kernel to Poisson statistics. Electron. J. Probab. 19(114), 1–25 (2014)

    MathSciNet  MATH  Google Scholar 

  2. Alastuey, A., Jancovici, B.: On the classical two-dimensional one-component Coulomb plasma. J. Phys. 42(1), 1–12 (1981)

    Article  MathSciNet  Google Scholar 

  3. Bethuel, F., Brezis, H., Hélein, F.: Ginzburg-Landau vortices. Progress in Nonlinear Differential Equations and their Applications, 13. Birkhäuser Boston Inc., Boston (1994)

    MATH  Google Scholar 

  4. Borodin, A., Serfaty, S.: Renormalized energy concentration in random matrices. Commun. Math. Phys. 320(1), 199–244 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Dumitriu, I., Edelman, A.: Matrix models for beta ensembles. J. Math. Phys 43, 5830–5847 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Daley, D.J., Verey-Jones, D.: An Introduction to the Theory of Point Processes. Springer, New York (1988)

    Google Scholar 

  7. Daley, D.J., Verey-Jones, D.: An Introduction to the Theory of Point Processes. Springer, New York (2008)

    Book  Google Scholar 

  8. Forrester, P.J.: Exact integral formulas and asymptotics for the correlations in the \(1/r^2\) quantum many-body system. Phys. Lett. A 179(2), 127–130 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  9. Forrester, P.J.: Log-Gases and Random Matrices. London Mathematical Society Monographs Series. Princeton University Press, Princeton (2010)

    Google Scholar 

  10. Ginibre, J.: Statistical ensembles of complex, quaternion, and real matrices. J. Math. Phys. 6, 440–449 (1965)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Ge, Y., Sandier, E.: On lattices with finite Coulombian interaction energy in the plane. arXiv:1307.2621 (2013)

  12. Kuna, T., Lebowitz, J.L., Speer, E.R.: Realizability of point processes. J.Stat. Phys. 129(3), 417–439 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Leblé, T.: A uniqueness result for minimizers of the 1D log-gas renormalized energy. J. Funct. Anal. 268(7), 1649–1677 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Leblé, T., Serfaty, S.: Large deviation principle for empirical fields of log and Riesz gases. arXiv:1502.02970 (2015)

  15. Nakano, F.: Level statistics for one-dimensional Schrödinger operators and Gaussian beta ensemble. J. Stat. Phys. 156(1), 66–93 (2014)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Petrache, M., Serfaty, S.: Next order asymptotics and renormalized energy for Riesz interactions. J. Inst. Math. Jussieu 5, 1–69 (2015)

    Article  Google Scholar 

  17. Rassoul-Agha, F., Seppäläinen, T.: A course on large deviation theory with an introduction to Gibbs measures, volume 162 of Graduate Studies in Mathematics. American Mathematical Society, 2015 edn (2009)

  18. Rougerie, N., Serfaty, S.: Higher-dimensional Coulomb gases and renormalized energy functionals. Commun. Pure Appl. Math. (2015)

  19. Serfaty, S.: Coulomb gases and Ginzburg-Landau vortices. Eur. Math. Soc. Zurich Lecture Notes in Mathematics (2014)

  20. Sandier, E., Serfaty, S.: 2D coulomb gases and the renormalized energy. Ann. Probab. 43(4), 2026–2083 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sandier, E., Serfaty, S.: 1D Log gases and the renormalized energy: crystallization at vanishing temperature. Probab. Theory Rel. 162(3), 1–52 (2015)

    MathSciNet  MATH  Google Scholar 

  22. Torquato, S., Stillinger, F.H.: Local density fluctuations, hyperuniformity, and order metrics. Phys. Rev. E 68(4), 041113 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  23. Valkó, B., Virág, B.: Continuum limits of random matrices and the Brownian carousel. Invent. Math. 177(3), 463–508 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Acknowledgments

The author would like to thank his PhD supervisor, Sylvia Serfaty, for helpful discussions and many useful comments on this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Leblé.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leblé, T. Logarithmic, Coulomb and Riesz Energy of Point Processes. J Stat Phys 162, 887–923 (2016). https://doi.org/10.1007/s10955-015-1425-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-015-1425-4

Keywords

Navigation