Skip to main content
Log in

Renormalized Energy Concentration in Random Matrices

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We define a “renormalized energy” as an explicit functional on arbitrary point configurations of constant average density in the plane and on the real line. The definition is inspired by ideas of Sandier and Serfaty (From the Ginzburg-Landau model to vortex lattice problems, 2012; 1D log-gases and the renormalized energy, 2013). Roughly speaking, it is obtained by subtracting two leading terms from the Coulomb potential on a growing number of charges. The functional is expected to be a good measure of disorder of a configuration of points. We give certain formulas for its expectation for general stationary random point processes. For the random matrix β-sine processes on the real line (β = 1,2,4), and Ginibre point process and zeros of Gaussian analytic functions process in the plane, we compute the expectation explicitly. Moreover, we prove that for these processes the variance of the renormalized energy vanishes, which shows concentration near the expected value. We also prove that the β = 2 sine process minimizes the renormalized energy in the class of determinantal point processes with translation invariant correlation kernels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, G. W., Guionnet, A., Zeitouni, O.: An introduction to random matrices. Cambridge: Cambridge University Press, 2010

  2. Bethuel, F., Brezis, H., Hélein, F.:Ginzburg-Landau Vortices. Basd-Boston: Birkhäuser, 1994

  3. Baik, J., Kriecherbauer, T., McLaughlin, K. T.-R., Miller, P. D.: Discrete orthogonal polynomials. Asymptotics and applications. Annals of Mathematics Studies 164, Princeton, NJ: Princeton University Press, 2007

  4. Borodin, A.: Determinantal point processes. http://arXiv.org/abs/0911.1153v1 [math.PR], 2009

  5. Borodin A., Okounkov A., Olshanski G.: Asymptotics of Plancherel measures for symmetric groups. J. Amer. Math. Soc. 13(3), 481–515 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Daley, D. J., Verey-Jones, D.: An introduction to the theory of point processes. Berlin-Heidelberg-Newyork: Springer, 1988

  7. Dyson, F.: Statistical theory of the energy levels of a complex system, Part I. J. Math. Phys. 3, 140–156 (1962); Part II, ibid. 157–165; Part III, ibid. 166–175

  8. Dyson F.J., Mehta M.L.: Statistical theory of the energy levels of complex systems Part IV. J. Math. Phys. 4, 701–712 (1963)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Edwards, R. E.: Functional Analysis. Austin, TX: Holt, Rinehartand winston (1965)

  10. Faris W.G.: Combinatorics and cluster expansions. Probability Surveys 7, 157–206 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Forrester, P. J.: Log-gases and random matrices. London Mathematical Society Monographs Series 34, Princeton, UJ: Princeton University Press, 2010

  12. Forrester P.J., Honner G.: Exact statistical properties of the zeros of complex random polynomials. J. Phys. A 32(16), 296–2981 (1999)

    Article  MathSciNet  Google Scholar 

  13. Ghosh, S., Nazarov, F., Peres, Y., Sodin, M.: In preparation

  14. Hough, J. B., Krishnapur, M., Peres, Y., Virág, B.: Zeros of Gaussian analytic functions and determinantal point processes. University Lecture Series 51, Providence, RI: Amer. Math. Soc., 2009

  15. Jancovici B.: Exact results for the two-dimensional one-component plasma. Phys. Rev. Lett. 46, 263–280 (1981)

    Article  MathSciNet  Google Scholar 

  16. Johansson, K.: Random matrices and determinantal processes. Mathematical statistical physics. Amsterdam: Elsevier B. V., 2006, pp. 1–55

  17. Lang, S.: Elliptic functions. New York: Springer-Verlag, 1987

  18. Lewin, L.: Polylogarithms and associated functions. Amsterdan: North-Holland, 1981

  19. Lieb, E., Loss, M.: Analysis. Graduate Studies in Mathematics 14, Providence, RI: Amer. Math. Soc., 1997

  20. König W.: Orthogonal polynomial ensembles in probability theory. Prob. Surv. 2, 385–447 (2005)

    Article  MATH  Google Scholar 

  21. Lyons R.: Determinantal probability measures. Publ. Math. Inst. Hautes Etudes Sci. 98, 167–212 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mehta, M. L.: Random matrices. Third edition, London: Elsevier/Academic Press, 2004

  23. Nazarov, F., Sodin, M.: Random complex zeroes and random nodal lines. Proceedings of the International Congress of Mathematicians. Volume III, 2010, pp. 1450–1484

  24. Prudnikov, A. P., Brychkov, Y. A., Marichev, O. I.: Integrals and series, vol. 1: Elementary functions. Newyork: Gordon and Breach Sci. Publ., 1986

  25. Prudnikov, A. P., Brychkov, Y. A., Marichev, O. I.: Integrals and series, vol. 2: Special functions. Newyork: Gordon and Breach Sci. Publ., 1986

  26. Saff, E., Totik, V.: Logarithmic potentials with external fields. Berlin-Heidelberg-Newyork: Springer-Verlag, 1997

  27. Sandier, E., Serfaty, S.: From the Ginzburg-Landau model to vortex lattice problems. Commun. Math. Phys. 313, 635–743 (2012)

    Google Scholar 

  28. Sandier, E., Serfaty, S.: 2D Coulomb gases and the renormalized energy. http://arXiv.org/abs/1201.3503 [math-ph], 2012

  29. Sandier, E., Serfaty, S.: 1D Log gases and the renormalized energy: crystallization at vanishing temperature, arXiv:1303.2968 (2013)

  30. Sandier, E., Serfaty, S.: Vortices in the Magnetic Ginzburg-Landau Model. Basel-Bostn: Birkhäuser, 2007

  31. Schwartz, L.: Théorie des distributions, tome 2. Paris: Hermann, 1951

  32. Soshnikov A.: Determinantal random point fields. Russian Math. Surveys 55, 923–975 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. Soshnikov, A.: Determinantal Random Fields. In: Encyclopedia of Mathematical Physics, Oxford: Elsevier, 2006, pp. 47–53

  34. Torquato S., Scardicchio A., Zachary C.E.: Point processes in arbitrary dimension from fermionic gases, random matrix theory, and number theory. J. Stat. Mech. Theory Exp. 11, P11019 (2008)

    Article  MathSciNet  Google Scholar 

  35. Tracy C., Widom H.: Correlation Functions, Cluster Functions, and Spacing Distributions for Random Matrices. J. Stat. Phys. 92(5-6), 809–835 (1998)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. Valkó B., Virág B.: Continuum limits of random matrices and the Brownian carousel. Invent. Math. 177(3), 463–508 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvia Serfaty.

Additional information

Communicated by H.-T. Yau

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borodin, A., Serfaty, S. Renormalized Energy Concentration in Random Matrices. Commun. Math. Phys. 320, 199–244 (2013). https://doi.org/10.1007/s00220-013-1716-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-013-1716-z

Keywords

Navigation