Skip to main content
Log in

Derivation of Stokes’ Law from Kirkwood’s Formula and the Green–Kubo Formula via Large Deviation Theory

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We study the friction coefficient of a macroscopic sphere in a viscous fluid at low Reynolds number. First, Kirkwood’s formula for the friction coefficient is reviewed on the basis of the Hamiltonian description of particle systems. According to this formula, the friction coefficient is expressed in terms of the stress correlation on the surface of the macroscopic sphere. Then, with the aid of large deviation theory, we relate the surface stress correlation to the stress correlation in the bulk of the fluid, where the latter is characterized by the viscosity in the Green–Kubo formula. By combining Kirkwood’s formula and the Green–Kubo formula in large deviation theory, we derive Stokes’ law without explicitly employing the hydrodynamic equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Callen, H.B.: Thermodynamics and an Introduction to Thermostatistics, 2nd edn. Wiley, New York (1985)

    MATH  Google Scholar 

  2. Landau, L.D., Lifshitz, E.M.: Statistical Physics, vol. 5, 3rd edn. Pergamon Press, Oxford (1980)

    Google Scholar 

  3. De Groot, S.R., Mazur, P.: Non-equilibrium Thermodynamics. Dover, New York (1984)

    Google Scholar 

  4. Zubarev, D.N.: Nonequilibrium Statistical Thermodynamics. Consultants Bureau, New York (1974)

    Google Scholar 

  5. Kubo, R., Toda, M., Hashitsume, N.: Statistical Physics II: Nonequilibrium Statistical Mechanics. Springer, Berlin (1985)

    Book  Google Scholar 

  6. Sasa, S., Tasaki, H.: Steady state thermodynamics. J. Stat. Phys. 125, 125–224 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Landau, L.D., Lifshitz, E.M.: Fluid Mechanics, vol. 6, 1st edn. Pergamon Press, Oxford (1959)

    Google Scholar 

  8. Chapman, S., Cowling, T.G.: The Mathematical Theory of Non-uniform Gases, 3rd edn. Cambridge University Press, Cambridge (1970)

    Google Scholar 

  9. Evans, D.J., Cohen, E.G.D., Morriss, G.P.: Probability of second law violations in shearing steady states. Phys. Rev. Lett. 71, 2401–2404 (1993)

    Article  MATH  ADS  Google Scholar 

  10. Gallavotti, G., Cohen, E.G.D.: Dynamical ensembles in nonequilibrium statistical mechanics. Phys. Rev. Lett. 74, 2694–2697 (1995)

    Article  ADS  Google Scholar 

  11. Kurchan, J.: Fluctuation theorem for stochastic dynamics. J. Phys. A 31, 3719–3729 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  12. Lebowitz, J.L., Spohn, H.: A Gallavotti-Cohen-type symmetry in the large deviation functional for stochastic dynamics. J. Stat. Phys. 95, 333–365 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. Maes, C.: The fluctuation theorem as a Gibbs property. J. Stat. Phys. 95, 367–392 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. Crooks, G.E.: Entropy production fluctuation theorem and the nonequilibrium work relation for free energy differences. Phys. Rev. E 60, 2721–2726 (1999)

    Article  ADS  Google Scholar 

  15. Crooks, G.E.: Path-ensemble averages in systems driven far from equilibrium. Phys. Rev. E 61, 2361–2366 (2000)

    Article  ADS  Google Scholar 

  16. Jarzynski, C.: Hamiltonian derivation of a detailed fluctuation theorem. J. Stat. Phys. 98, 77–102 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  17. Jarzynski, C.: Nonequilibrium equality for free energy differences. Phys. Rev. Lett. 78, 2690–2693 (1997)

    Article  ADS  Google Scholar 

  18. Hayashi, K., Sasa, S.: Linear response theory in stochastic many-body systems revisited. Phys. A 370, 407–429 (2006)

    Article  Google Scholar 

  19. Seifert, U.: Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep. Prog. Phys. 75, 126001 (2012)

    Article  ADS  Google Scholar 

  20. Sasa, S.: Derivation of hydrodynamics from the Hamiltonian description of particle systems. Phys. Rev. Lett. 112, 100602 (2014)

    Article  ADS  Google Scholar 

  21. Kirkwood, J.: The statistical mechanical theory of transport processes I. General theory. J. Chem. Phys. 14, 180–201 (1946)

    Article  ADS  Google Scholar 

  22. Lebowitz, J.L., Rubin, E.: Dynamical study of Brownian motion. Phys. Rev. 131, 2381–2396 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  23. Zwanzig, R.: Elementary derivation of time-correlation formulas for transport coefficients. J. Chem. Phys. 40, 2527–2533 (1964)

    Article  ADS  Google Scholar 

  24. Mazur, P., Oppenheim, I.: Molecular theory of Brownian motion. Physica 50, 241–258 (1970)

    Article  ADS  Google Scholar 

  25. Lagar’kov, A.N., Sergeev, V.H.: Molecular dynamics method in statistical physics. Sov. Phys. Usp. 27, 566–588 (1978)

    Article  Google Scholar 

  26. Brey, J.J., Ordóñez, J.G.: Computer studies of Brownian motion in a Lennard-Jones fluid: the Stokes law. J. Chem. Phys. 76, 3260–3263 (1982)

    Article  ADS  Google Scholar 

  27. Español, P., Zúñiga, I.: Force autocorrelation function in Brownian motion theory. J. Chem. Phys. 98, 574–580 (1993)

    Article  ADS  Google Scholar 

  28. Ould-Kaddour, F., Levesque, D.: Determination of the friction coefficient of a Brownian particle by molecular-dynamics simulation. J. Chem. Phys. 118, 7888–7891 (2003)

    Article  ADS  Google Scholar 

  29. Lee, S.H., Kapral, R.: Friction and diffusion of a Brownian particle in a mesoscopic solvent. J. Chem. Phys. 121, 11163–11169 (2004)

    Article  ADS  Google Scholar 

  30. Lorentz, H.A.: Les Theories Statistiques en Thermodynamique. B.G. Teubner, Leipzig (1912)

    Google Scholar 

  31. Green, M.S.: Brownian motion in a gas of noninteracting molecules. J. Chem. Phys. 19, 1036–1046 (1951)

    Article  MathSciNet  ADS  Google Scholar 

  32. Zwanzig, R.: Hydrodynamic fluctuations and Stokes’ law friction. J. Res. Natl. Bur. Std. (US) B 68, 143–145 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  33. Schmitz, R.: Fluctuations in nonequilibrium fluids. Phys. Rep. 171, 1–58 (1988)

    Article  ADS  Google Scholar 

  34. Kim, S., Karrila, S.J.: Microhydrodynamics: Principles and Selected Applications. Butterworth-Heinemann, Newton (1991)

    Google Scholar 

  35. Green, M.S.: Markoff random processes and the statistical mechanics of time-dependent phenomena. II. Irreversible processes in fluids. J. Chem. Phys. 22, 398–413 (1954)

    Article  MathSciNet  ADS  Google Scholar 

  36. Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications, 2nd edn. Springer, New York (1998)

    Book  MATH  Google Scholar 

  37. Touchette, H.: The large deviation approach to statistical mechanics. Phys. Rep. 478, 1–69 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  38. Shiraishi, N.: Anomalous system size dependence of large deviation functions for local empirical measure. J. Stat. Phys. 152, 336–352 (2013)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  39. Bodineau, T., Derrida, B.: Current fluctuations in nonequilibrium diffusive systems: an additivity principle. Phys. Rev. Lett. 92, 180601 (2004)

    Article  ADS  Google Scholar 

  40. Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Current fluctuations in stochastic lattice gases. Phys. Rev. Lett. 94, 030601 (2005)

    Article  ADS  Google Scholar 

  41. Duhr, S., Braun, D.: Why molecules move along a temperature gradient. Proc. Natl. Acad. Sci. USA 103, 19678–19682 (2006)

    Article  ADS  Google Scholar 

  42. Piazza, R., Parola, A.: Thermophoresis in colloidal suspensions. J. Phys. Condens. Matter 20, 153102 (2008)

    Article  ADS  Google Scholar 

  43. Jiang, H.R., Wada, H., Yoshinaga, N., Sano, M.: Manipulation of colloids by a nonequilibrium depletion force in a temperature gradient. Phys. Rev. Lett. 102, 208301 (2009)

    Article  ADS  Google Scholar 

  44. Würger, A.: Thermal non-equilibrium transport in colloids. Rep. Prog. Phys. 73, 126601 (2010)

    Article  ADS  Google Scholar 

  45. Fruleux, A., Kawai, R., Sekimoto, K.: Momentum transfer in nonequilibrium steady states. Phys. Rev. Lett. 108, 160601 (2012)

    Article  ADS  Google Scholar 

  46. Marchetti, M.C., Joanny, J.F., Ramaswamy, S., Liverpool, T.B., Prost, J., Rao, M., Simha, R.A.: Hydrodynamics of soft active matter. Rev. Mod. Phys. 85, 1143–1189 (2013)

    Article  ADS  Google Scholar 

  47. Bursac, P., Lenormand, G., Fabry, B., Oliver, M., Weitz, D.A., Viasnoff, V., Butlerm, J.P., Fredberg, J.J.: Cytoskeletal remodelling and slow dynamics in the living cell. Nat. Mater. 4, 557–561 (2005)

    Article  ADS  Google Scholar 

  48. Mizuno, D., Tardin, C., Schmidt, C.F., MacKintosh, F.C.: Nonequilibrium mechanics of active cytoskeletal networks. Science 315, 370–373 (2007)

    Article  ADS  Google Scholar 

  49. Trepat, X., Deng, L., An, S.S., Navajas, D., Tschumperlin, D.J., Gerthoffer, W.T., Butler, J.P., Fredberg, J.J.: Universal physical responses to stretch in the living cell. Nature 447, 592–595 (2007)

    Article  ADS  Google Scholar 

  50. Fletcher, D.A., Mullins, R.D.: Cell mechanics and the cytoskeleton. Nature 463, 485–492 (2010)

    Article  ADS  Google Scholar 

  51. Albert, R., Pfeifer, M.A., Barabási, A.-L., Schiffer, P.: Slow drag in a granular medium. Phys. Rev. Lett. 82, 205–208 (1999)

    Article  ADS  Google Scholar 

  52. Katsuragi, H., Durian, D.J.: Unified force law for granular impact cratering. Nat. Phys. 3, 420–423 (2007)

    Article  Google Scholar 

  53. Goldman, D.I., Umbanhowar, P.: Scaling and dynamics of sphere and disk impact into granular media. Phys. Rev. E 77, 021308 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  54. Takehara, Y., Okumura, K.: High-velocity drag friction in granular media near the jamming point. Phys. Rev. Lett. 112, 148001 (2014)

    Article  ADS  Google Scholar 

  55. Yang, X., Manning, M.L., Marchetti, M.C.: Aggregation and segregation of confined active particles. Soft matter 10, 6477–6484 (2014)

    Article  Google Scholar 

  56. Takatori, S.C., Yan, W., Brady, J.F.: Swim pressure: stress generation in active matter. Phys. Rev. Lett. 113, 028103 (2014)

    Article  ADS  Google Scholar 

  57. Ginot, F., Theurkauff, I., Levis, D., Ybert, C., Bocquet, L., Berthier, L., Cottin-Bizonne, C.: Nonequilibrium equation of state in suspensions of active colloids. Phys. Rev. X 5, 011004 (2015)

    Google Scholar 

  58. Solon, A.P., Fily, Y., Baskaran, A., Cates, M.E., Kafri, Y., Kardar, M., Tailleur, J.: Pressure is not a state function for generic active fluids. Nat. Phys. 11, 673–678 (2015)

    Article  Google Scholar 

  59. Maldacena, J.M.: The large \(N\) limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231–252 (1998)

    MATH  MathSciNet  ADS  Google Scholar 

  60. Gubser, S.S., Klebanov, I.R., Polyakov, A.M.: Gauge theory correlators from non-critical string theory. Phys. Lett. B. 428, 105–114 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  61. Witten, E.: Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 2, 253–291 (1998)

    MATH  MathSciNet  ADS  Google Scholar 

  62. Aharony, O., Gubser, S.S., Maldacena, J.M., Ooguri, H., Oz, Y.: Large \(N\) field theories, string theory and gravity. Phys. Rep. 323, 183–386 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  63. Ryu, S., Takayanagi, T.: Holographic derivation of entanglement entropy from the anti-de sitter space/conformal field theory correspondence. Phys. Rev. Lett. 96, 181602 (2006)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank T. Matsumoto, Y. Nakayama, K. Sekimoto, and A. Yoshimori for useful discussions. The present study was supported by KAKENHI Nos. 22340109 and 25103002, and by the JSPS Core-to-Core program “Non-equilibrium dynamics of soft-matter and information.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masato Itami.

Appendix: Fluctuating Hydrodynamics

Appendix: Fluctuating Hydrodynamics

We describe a viscous incompressible fluid at low Reynolds number by the fluctuating hydrodynamic equations in spherical coordinates. We denote by \(\varvec{u}(\varvec{r},t)\), \(p(\varvec{r},t)\), \(\overleftrightarrow {\varvec{\sigma }}(\varvec{r},t)\), and \(\overleftrightarrow {\varvec{s}}(\varvec{r},t)\) the velocity, pressure, stress tensor, and random stress tensor at position \(\varvec{r}\) and time t, respectively. In this case, each component of the stress tensor is written as

$$\begin{aligned} \sigma ^{rr}&= - p + 2\eta \frac{\partial u^{r}}{\partial r} + s^{rr}, \end{aligned}$$
(117)
$$\begin{aligned} \sigma ^{\theta \theta }&= - p + 2\eta \left( \frac{1}{r}\frac{\partial u^{\theta }}{\partial \theta }+\frac{u^{r}}{r}\right) + s^{\theta \theta } , \end{aligned}$$
(118)
$$\begin{aligned} \sigma ^{\varphi \varphi }&= - p + 2\eta \left( \frac{1}{r\sin \theta }\frac{\partial u^{\varphi }}{\partial \varphi }+\frac{u^{r}}{r}+\frac{u^{\theta }}{r\tan \theta }\right) + s^{\varphi \varphi } , \end{aligned}$$
(119)
$$\begin{aligned} \sigma ^{r\theta }&= \eta \left( \frac{1}{r}\frac{\partial u^{r}}{\partial \theta } + \frac{\partial u^{\theta }}{\partial r}-\frac{u^{\theta }}{r}\right) + s^{r\theta }, \end{aligned}$$
(120)
$$\begin{aligned} \sigma ^{\theta \varphi }&= \eta \left( \frac{1}{r\sin \theta }\frac{\partial u^{\theta }}{\partial \varphi }+\frac{1}{r}\frac{\partial u^{\varphi }}{\partial \theta }-\frac{u^{\varphi }}{r\tan \theta }\right) + s^{\theta \varphi }, \end{aligned}$$
(121)
$$\begin{aligned} \sigma ^{\varphi r}&= \eta \left( \frac{1}{r\sin \theta }\frac{\partial u^{r}}{\partial \varphi }+\frac{\partial u^{\varphi }}{\partial r}-\frac{u^{\varphi }}{r}\right) + s^{\varphi r}. \end{aligned}$$
(122)

We assume that the temperature T and density \(\rho \) of the fluid are constant and homogeneous. Because we are focusing on incompressible fluid, we assume that the bulk viscosity \(\zeta \) is equal to zero and that \(\nabla \cdot \varvec{u}=0\). This is written as

$$\begin{aligned} \frac{\partial u^{r}}{\partial r} + \frac{2u^{r}}{r} + \frac{1}{r}\frac{\partial u^{\theta }}{\partial \theta } + \frac{u^{\theta }}{r\tan \theta } + \frac{1}{r\sin \theta }\frac{\partial u^{\varphi }}{\partial \varphi } =0. \end{aligned}$$
(123)

Furthermore, the time evolution equation of \(\varvec{u}(\varvec{r},t)\) is assumed to be given by

$$\begin{aligned} \rho \frac{\partial \varvec{u}}{\partial t} = \nabla \cdot \overleftrightarrow {\varvec{\sigma }}, \end{aligned}$$
(124)

because the Reynolds number is sufficiently low. Finally, the random stresses are assumed to be zero-mean Gaussian white noises with covariance

$$\begin{aligned}&\left\langle s^{\alpha \beta }(r,\varOmega ,t)s^{\alpha ' \beta '}(r',\varOmega ',t')\right\rangle \nonumber \\&\qquad = 2k_\mathrm{B}T\eta \Delta ^{\alpha \beta \alpha ' \beta '}\frac{\delta (r-r')\delta (\varOmega -\Omega ')}{r^2}\delta (t-t'), \end{aligned}$$
(125)
$$\begin{aligned} \Delta ^{\alpha \beta \alpha ' \beta '} = \delta ^{\alpha \alpha '}\delta ^{\beta \beta '} + \delta ^{\alpha \beta '}\delta ^{\beta \alpha '} - \frac{2}{3}\delta ^{\alpha \beta }\delta ^{\alpha ' \beta '}. \end{aligned}$$
(126)

where we have used \(\zeta = 0\). Note that (125) leads to

$$\begin{aligned} s^{rr}+s^{\theta \theta }+s^{\varphi \varphi }=0. \end{aligned}$$
(127)

By recalling (117), (118), (119), and (123), we also have

$$\begin{aligned} \sigma ^{rr}+\sigma ^{\theta \theta }+\sigma ^{\varphi \varphi } + 3p=0. \end{aligned}$$
(128)

For any time-dependent quantity A(t), we denote its path during the time interval \([0,\tau ]\) by [A]. Then, using (125) and the Gaussian property of \(s^{\alpha \beta }\), we obtain the probability density of \(\{ [p],[\sigma ^{\alpha \beta }],[u^{\alpha }]\}\) in the form

$$\begin{aligned} \mathcal {P}\left( \{ [p],[\sigma ^{\alpha \beta }],[u^{\alpha }]\} \right) =&\; C_{0} \exp \left[ -\tau \mathcal {I}\left( \{ [p],[\sigma ^{\alpha \beta }],[u^{\alpha }]\} \right) \right] \nonumber \\&\times \prod _{t}\prod _{\varvec{r}}\delta \left( \rho \partial _{t} \varvec{u}-\nabla \cdot \overleftrightarrow {\varvec{\sigma }}\right) \nonumber \\&\times \prod _{t}\prod _{\varvec{r}} \delta \left( \nabla \cdot \varvec{u} \right) \delta \left( \sigma ^{rr}+ \sigma ^{\theta \theta }+ \sigma ^{\varphi \varphi }+3p\right) \end{aligned}$$
(129)

with

$$\begin{aligned} \mathcal {I} \left( \{ [p],[\sigma ^{\alpha \beta }],[u^{\alpha }]\} \right)&= \frac{1}{4k_\mathrm{B}T\eta \tau } \int _{0}^{\tau } dt \int _{\mathcal {R}}^{\infty } dr\; r^2\int d\varOmega \; s^{\alpha \beta }( \tilde{\Delta }^{-1})^{\alpha \beta \alpha ' \beta '}s^{\alpha '\beta '} , \end{aligned}$$
(130)

where \(C_0\) is the normalization constant and \(s^{\alpha \beta }\) in the right-hand side is related to \((p,\sigma ^{\alpha \beta },u^{\alpha })\) through (117)–(122). By applying the contraction principle to (129), we obtain the probability density of the surface stress fluctuations as

$$\begin{aligned} P(\bar{\sigma }_{*})&= \int _{\bar{\sigma }_{*}\text {:fix}} \mathcal {D}p \mathcal {D} \sigma ^{\alpha \beta } \mathcal {D} u^{\alpha }\; \mathcal {P}\left( \{ [p],[\sigma ^{\alpha \beta }],[u^{\alpha }]\} \right) \nonumber \\&= C_0' \exp \left[ -\tau I(\bar{\sigma }_{*}) \right] \end{aligned}$$
(131)

with

$$\begin{aligned} I(\bar{\sigma }_{*}) = \min _{\begin{array}{c} \{ [\sigma ^{\alpha \beta }], [u^{\alpha }]\} \\ \bar{\sigma }_{*}\text {:fix} \end{array}}\; \frac{1}{4k_\mathrm{B}T\eta \tau }\int _{0}^{\tau }dt \int _{\mathcal {R}}^{\infty }dr \int _{0}^{\pi } d\theta \int _{0}^{2\pi } d\varphi \; \mathcal {L}\left( \{ [\sigma ^{\alpha \beta }],[u^{\alpha }]\} \right) , \end{aligned}$$
(132)

and

$$\begin{aligned} \mathcal {L}\left( \{ [\sigma ^{\alpha \beta }],[u^{\alpha }]\} \right)&= r^2 \sin \theta \; \Big [ s^{{\alpha }{\beta }} (\tilde{\Delta }^{-1})^{{\alpha }{\beta }{\alpha }'{\beta }'} s^{{\alpha }'{\beta }'} \nonumber \\&\quad + \varvec{\lambda }_{1}\cdot \left( \rho \partial _{t}\varvec{u}-\nabla \cdot \overleftrightarrow {\varvec{\sigma }}\right) + \lambda _2 \left( \nabla \cdot \varvec{u}\right) \Big ] , \end{aligned}$$
(133)

where \(C_0'\) is the normalization constant, \(\varvec{\lambda }_{1}(\varvec{r},t)\) and \(\lambda _{2}(\varvec{r},t)\) are the Lagrange multiplier fields, \(p=-(\sigma ^{rr}+\sigma ^{\theta \theta }+\sigma ^{\varphi \varphi })/3\), and “\(\bar{\sigma }_{*}\text {:fix}\)” represents the condition given in

$$\begin{aligned} \bar{\sigma }_{*} = \frac{1}{4\pi \tau } \int _{0}^{\tau } dt \int d\varOmega \; \left[ \cos \theta \; \sigma ^{rr}(\mathcal {R},\varOmega ,t) - \sin \theta \; \sigma ^{r\theta }(\mathcal {R},\varOmega ,t)\right] . \end{aligned}$$
(134)

If a time-independent configuration with \(\varvec{u}=\varvec{0}\) is the minimizer of (132), we obtain the same result as in (77)–(79).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Itami, M., Sasa, Si. Derivation of Stokes’ Law from Kirkwood’s Formula and the Green–Kubo Formula via Large Deviation Theory. J Stat Phys 161, 532–552 (2015). https://doi.org/10.1007/s10955-015-1349-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-015-1349-z

Keywords

Navigation