Skip to main content
Log in

Nonlinear Theory of Anomalous Diffusion and Application to Fluorescence Correlation Spectroscopy

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The nonlinear theory of anomalous diffusion is based on particle interactions giving an explicit microscopic description of diffusive processes leading to sub-, normal, or super-diffusion as a result of competitive effects between attractive and repulsive interactions. We present the explicit analytical solution to the nonlinear diffusion equation which we then use to compute the correlation function which is experimentally measured by correlation spectroscopy. The theoretical results are applicable in particular to the analysis of fluorescence correlation spectroscopy of marked molecules in biological systems. More specifically we consider the cases of fluorescently labeled lipids in the plasma membrane and of fluorescent apoferritin (a spherically shaped oligomer) in a crowded dextran solution and we find that the nonlinear correlation spectra reproduce very well the experimental data indicating sub-diffusive molecular motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. The analysis has been generalised to include super-diffusion by introducing a similar power law ansatz for the distribution of particle displacements [9].

  2. In the restricted case that the walkers have equal probability to move in any direction, the NLFP reduces to the phenomenological porous media equation [15].

  3. The fluorescence correlation spectrum was also computed analytically from the solution of fractional diffusion equation for sub-diffusive motion [19].

References

  1. Einstein, A.: Uber die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys. 17, 549–560 (1905)

    Article  MATH  Google Scholar 

  2. Golding, I., Cox, E.C.: Physical nature of bacterial cytoplasm. Phys. Rev. Lett. 96, 098–102 (2006)

    Article  Google Scholar 

  3. Fujiwara, T., et al.: Phospholipids undergo hop diffusion in compartmentalized cell membrane. J. Cell Biol. 157, 1071–1081 (2002)

    Article  Google Scholar 

  4. Sanchez, T., et al.: Spontaneous motion in hierarchically assembled active matter. Nature 491, 431–434 (2012)

    Article  ADS  Google Scholar 

  5. Douglass, K.M., Sukhov, S., Dogariu, A.: Superdiffusion in optically controlled active media. Nat. Photon. 6, 834–837 (2012)

    Article  ADS  Google Scholar 

  6. Sokolov, I.M., Klafter, J., Blumen, A.: Fractional kinetics. Phys. Today 55, 48–54 (2002)

    Article  Google Scholar 

  7. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion. Phys. Rep. 339, 1–77 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. Barkai, E., Garini, Y., Metzler, R.: Strange kinetics of single molecules in living cells. Phys. Today 65, 29–35 (2012)

    Article  Google Scholar 

  9. Abe, S.: Variational principle for fractional kinetics and the Lvy Ansatz. Phys. Rev. E 88, 022142–145 (2013)

    Article  ADS  Google Scholar 

  10. Sebastian, K.L.: Path integral representation for fractional Brownian motion. J. Phys. A 28, 4305–4312 (1995)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Calvo, I., Sanchez, R.: The path integral formulation of fractional Brownian motion for the general Hurst exponent. J. Phys. A 41, 282002–5 (2008)

    Article  MathSciNet  Google Scholar 

  12. Boon, J.P., Lutsko, J.F.: Nonlinear diffusion from Einsteins master equation. Euro. Phys. Lett. 80(60006), 1–4 (2007)

    Google Scholar 

  13. Lutsko, J.F., Boon, J.P.: Generalized diffusion: a microscopic approach. Phys. Rev. E 77(051103), 1–13 (2008)

    MathSciNet  Google Scholar 

  14. Lutsko, J.F., Boon, J.P.: Microscopic theory of anomalous diffusion based on particle interactions. Phys. Rev. E 88(022108), 1–8 (2013)

    Google Scholar 

  15. Muskat, M.: A phenomenological version of the nonlinear diffusion equation. The flow of homogeneous fluids through porous media. McGrawHill, New York (1937)

    Google Scholar 

  16. Schwille, P., Haustein, E.: Fluorescence correlation spectroscopy. Biophysics Textbook Online (BTOL, 2007)

  17. Elson, E.L.: Fluorescence correlation spectroscopy: past, present, future. Biophys. J. 101, 2855–2870 (2011); see also Sect. 4.2 in Höfling, F., Franosch, T.: Anomalous transport in the crowded world of biological cells. Rep. Prog. Phys. 76, 046602 (2013)

  18. Schwille, P., Korlach, J., Webb, W.W.: Fluorescence correlation spectroscopy with single-molecule sensitivity on cell and model membranes. Cytometry 36, 176–182 (1999)

    Article  Google Scholar 

  19. Lubelski, A., Klafter, J.: Fluorescence correlation spectroscopy: the case of subdiffusion. Biophys. J. 96, 2055–2063 (2009)

    Article  ADS  Google Scholar 

  20. Szymanski, J., Weiss, M.: Elucidating the origin of anomalous diffusion in crowded fluids. Phys. Rev. Lett 103, 038102–05 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the European Space Agency under contract number ESA AO-2004-070.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Pierre Boon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boon, J.P., Lutsko, J.F. Nonlinear Theory of Anomalous Diffusion and Application to Fluorescence Correlation Spectroscopy. J Stat Phys 161, 1366–1378 (2015). https://doi.org/10.1007/s10955-015-1315-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-015-1315-9

Keywords

Navigation