Skip to main content
Log in

Product Vacua and Boundary State Models in \(d\)-Dimensions

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We introduce and analyze a class of quantum spin models defined on \(d\)-dimensional lattices \(\Lambda \subseteq {\mathbb Z}^d\), which we call Product Vacua with Boundary States (PVBS). We characterize their ground state spaces on arbitrary finite volumes and study the thermodynamic limit. Using the martingale method, we prove that the models have a gapped excitation spectrum on \({\mathbb Z}^d\) except for critical values of the parameters. For special values of the parameters we show that the excitation spectrum is gapless. We demonstrate the sensitivity of the spectrum to the existence and orientation of boundaries. This sensitivity can be explained by the presence or absence of edge excitations. In particular, we study a PVBS models on a slanted half-plane and show that it has gapless edge states but a gapped excitation spectrum in the bulk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bachmann, S., Michalakis, S., Nachtergaele, B., Sims, R.: Automorphic equivalence within gapped phases of quantum lattice systems. Commun. Math. Phys. 309(3), 835–871 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  2. Bachmann, S., Nachtergaele, B.: Product vacua with boundary states. Phys. Rev. B 86(3), 035149 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  3. Bachmann, S., Nachtergaele, B.: On gapped phases with a continuous symmetry and boundary operators. J. Stat. Phys. 154, 91–112 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  4. Borgs, C., Kotecký, R., Ueltschi, D.: Low temperature phase diagrams for quantum perturbations of classical spin systems. Commun. Math. Phys. 181(2), 409–446 (1996)

    Article  MATH  ADS  Google Scholar 

  5. Bravyi, S., Hastings, M., Michalakis, S.: Topological quantum order: stability under local perturbations. J. Math. Phys. 51, 093512 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  6. Bravyi, S., Hastings, M.B.: A short proof of stability of topological order under local perturbations. Commun. Math. Phys. 307, 609 (2011)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. Chen, X., Gu, Z.-C., Liu, Z.-X., Wen, X.-G.: Symmetry protected topological orders and the group cohomology of their symmetry group. Phys. Rev. B 87, 155114 (2013)

    Article  ADS  Google Scholar 

  8. Chen, X., Gu, Z.-C., Wen, X.-G.: Classification of gapped symmetric phases in one-dimensional spin systems. Phys. Rev. B 83(3), 035107 (2011)

    Article  ADS  Google Scholar 

  9. Cirac, J.I., Michalakis, S., Perez-Garcia, D., Schuch, N.: Robustness in projected entangled pair states. Phys. Rev. B 88, 115108 (2013)

    Article  ADS  Google Scholar 

  10. Datta, N., Fernández, R., Fröhlich, J.: Low-temperature phase diagrams of quantum lattice systems. i. stability for quantum perturbations of classical systems with finitely-many ground states. J. Stat. Phys. 84, 455 (1996)

    Article  MATH  ADS  Google Scholar 

  11. Duivenvoorden, K., Quella, T.: Topological phases of spin chains. Phys. Rev. B 87, 125145 (2013)

    Article  ADS  Google Scholar 

  12. Ginibre, J.: Existence of phase transitions for quantum lattice systems. Commun. Math. Phys. 14, 205–234 (1969)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. Haegeman, J., Michalakis, S., Nachtergaele, B., Osborne, T.J., Schuch, N., Verstraete, F.: Elementary excitations in gapped quantum spin systems. Phys. Rev. Lett. 111, 080401 (2013)

    Article  ADS  Google Scholar 

  14. Hastings, M.: Classifying quantum phases with the Kirby torus trick. Phys. Rev. B 88, 165114 (2013)

    Article  ADS  Google Scholar 

  15. Kennedy, T., Tasaki, H.: Hidden symmetry breaking and the haldane phase in \(s=1\) quantum spin chains. Commun. Math. Phys. 147, 431–484 (1992)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  16. Kirkwood, J.R., Thomas, L.E.: Expansions and phase transitions for the ground state of quantum ising lattice systems. Commun. Math. Phys. 88, 569–580 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  17. Kitaev, A.: Periodic table for topological insulators and superconductors. In: Advances in theoretical physics : Landau Memorial Conference, Chernogolovka, Russia, 22–26 June 2008, AIP Conference Proceedings, vol. 1134. American Institute of Physics (2009)

  18. Kitaev, A.Y.: Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. Matsui, T.: Uniqueness of the translationally invariant ground state in quantum spin systems. Commun. Math. Phys. 126, 453–467 (1990)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. Michalakis, S., Pytel, J.: Stability of frustration-free hamiltonians. Commun. Math. Phys. 322, 277–302 (2013)

    Article  MATH  ADS  Google Scholar 

  21. Nachtergaele, B.: The spectral gap for some quantum spin chains with discrete symmetry breaking. Commun. Math. Phys. 175, 565–606 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. Nachtergaele, B., Ogata, Y., Sims, R.: Propagation of correlations in quantum lattice systems. J. Stat. Phys. 124, 1–13 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. Perez-Garcia, D., Sanz, M., Gonzalez-Guillen, C.E., Wolf, M.M., Cirac, J.I.: Characterizing symmetries in a projected entangled pair state. New J. Phys. 12, 025010 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  24. Schuch, N., Perez-Garcia, D., Cirac, I.: Classifying quantum phases using matrix product states and peps. Phys. Rev. B 84, 165139 (2011)

    Article  ADS  Google Scholar 

  25. Schuch, N., Poilblanc, D., Cirac, J.I., Perez-Garcia, D.: Topological order in peps: transfer operator and boundary hamiltonians. Phys. Rev. Lett. 111, 090501 (2013)

    Article  ADS  Google Scholar 

  26. Szehr, O., Wolf, M.M.: Perturbation theory for parent hamiltonians of matrix product states. arXiv:1402.4175, 2014, to appear in J. Stat. Phys

  27. Yang, S., Lehman, L., Poilblanc, D., Van Acoleyen, K., Verstraete, F., Cirac, J.I., Schuch, N.: Edge theories in projected entangled pair state models. Phys. Rev. Lett. 112, 036402 (2014)

    Article  ADS  Google Scholar 

  28. Yarotsky, D.A.: Ground states in relatively bounded quantum perturbations of classical lattice systems. Commun. Math. Phys. 261, 799–819 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgments

This research was supported in part by the National Science Foundation: S.B. under Grant #DMS-0757581 and B.N. and A.Y. under Grant #DMS-1009502. A.Y. also acknowledges support from the National Science Foundation under Grant #DMS-0636297. A.Y. would also like to thank the Mathematisches Institut at Ludwig-Maximilians-Universität München and the Erwin Schrödinger International Institute for Mathematical Physics (ESI) in Vienna, Austria, where part of the work reported here was carried out. E. H gratefully acknowledges the support of a Fulbright scholarship spent at University of California, Davis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven Bachmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bachmann, S., Hamza, E., Nachtergaele, B. et al. Product Vacua and Boundary State Models in \(d\)-Dimensions. J Stat Phys 160, 636–658 (2015). https://doi.org/10.1007/s10955-015-1260-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-015-1260-7

Keywords

Navigation