Skip to main content
Log in

Random Matrices in Non-confining Potentials

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider invariant matrix processes diffusing in non-confining cubic potentials of the form \(V_a(x)= x^3/3 - a x, a\in \mathbb {R}\). We construct the trajectories of such processes for all time by restarting them whenever an explosion occurs, from a new (well chosen) initial condition, insuring continuity of the eigenvectors and of the non exploding eigenvalues. We characterize the dynamics of the spectrum in the limit of large dimension and analyze the stationary state of this evolution explicitly. We exhibit a sharp phase transition for the limiting spectral density \(\rho _a\) at a critical value \(a=a^*\). If \(a\ge a^*\), then the potential \(V_a\) presents a well near \(x=\sqrt{a}\) deep enough to confine all the particles inside, and the spectral density \(\rho _a\) is supported on a compact interval. If \(a<a^*\) however, the steady state is in fact dynamical with a macroscopic stationary flux of particles flowing across the system. We prove that this flux \(j_a\) displays a second order phase transition at the critical value \(a^*\) such that \(j_a\sim C (a^*-a)^{3/2}\) when \(a\uparrow a^*\) where \(C\) is an explicit constant. In the subcritical regime, the eigenvalues allocate according to a stationary density profile \(\rho _{a}\) with full support in \(\mathbb {R}\), flanked with heavy tails such that \(\rho _{a}(x)\sim C_a /x^2\) as \(x\rightarrow \pm \infty \). Our method applies to other non-confining potentials and we further investigate a family of quartic potentials, which were already studied in (Brezin et al. in Commun Math Phys 59:35–51, 1978) to count planar diagrams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. To insure invariance by rotation, the variance of the real BMs on the diagonal has to be twice the off diagonal terms.

  2. An indirect derivation, which takes the stochastic differential system of the eigenvalues as granted in order to recover a posteriori the matrix equation (3.2) can also be done as in [4] for the usual Dyson Brownian motion.

  3. Note that the Stieltjes transform is sometimes defined as the negative of \(G\) i.e. \(\int _\mathbb {R}\nu (dx)/(z-x)\).

  4. The space \(\mathcal {C}([0,T],\mathcal {P}(\mathbb {R}))\) is a Polish space as \(\mathcal {P}(\mathbb {R})\) equipped with its weak topology is metrizable (\(\mathbb {R}\) is a separable space).

  5. Multiplicity four is excluded because it would imply for example that \(P'\) would have a root of multiplicity three.

  6. We did a numerical check of this fact with mathematica.

  7. \(K\) is a union of intervals. For instance, if \(P\) has four distinct eigenvalues \(x_1<x_2<x_3<x_4\), then \(\mu \) has a disconnected support of the form \([x_1,x_2] \cup [x_3,x_4]\).

  8. It is closed and sequentially compact

  9. But of course, as we are working with sub-probability measures, the weak-\(\star \) topology is weaker than the usual topology of weak-convergence where the limit should hold for all continuous bounded functions.

  10. The space \(\mathcal {C}([0,T],\mathcal {M}_{\le 1}(\mathbb {R}))\) is metrizable.

References

  1. Brezin, E., Itzykson, C., Parisi, G., Zuber, J.B.: Planar diagrams. Commun. Math. Phys. 59, 35–51 (1978)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. Wigner, E.P.: On the statistical distribution of the widths and spacings of nuclear resonance levels. Mathematical Proceedings of the Cambridge Philosophical Society, vol. 47, pp. 790–798 xiii, 3 (1951)

  3. Akemann, G., Baik, J., Di Francesco, Ph: The Oxford Handbook of Random Matrix Theory. Oxford University Press, New York (2011)

    MATH  Google Scholar 

  4. Anderson, G.W., Guionnet, A., Zeitouni, O.: An Introduction to Random Matrices. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  5. Bai, Z., Silverstein, J.: Spectral Analysis of Large Dimensional Random Matrices, 2nd edn. Springer, New York (2010)

    Book  MATH  Google Scholar 

  6. Mehta, M.L.: Random Matrices. Elsevier, New York (2004)

    MATH  Google Scholar 

  7. Forrester, P.J.: Log Gases and Random Matrices. Princeton University Press, Princeton (2010)

    MATH  Google Scholar 

  8. Di Francesco, P., Ginsparg, P.H., Zinn-Justin, J.: 2D Gravity and random matrices. Phys. Rep. 254, 1 (1995)

    Article  ADS  Google Scholar 

  9. ’t Hooft, G.: A planar diagram theory for strong interactions. Nucl. Phys. B 72, 461–473 (1974)

    Article  MathSciNet  ADS  Google Scholar 

  10. Marinari, E., Parisi, G.: A non perturbative definition of 2D quantum gravity. Phys. Lett. B 247, 537–542 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  11. Ferrari, P.A., Fontes, L.R.G.: Current fluctuations for the asymmetric simple exclusion process. Ann. Probab. 22(2), 820–832 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  12. Prähofer, M., Spohn, H.: Current fluctuations for the totally asymmetric simple exclusion process. Prog. Probab. 51, 185–204 (2002)

    Google Scholar 

  13. Biane, P., Speicher, R.: Free diffusions, free entropy and free Fischer information. Ann. I. H. Poincaré 37, 581–606 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  14. Ramírez, J.A., Rider, B., Virág, B.: Beta ensembles, stochastic Airy spectrum and a diffusion. J. Am. Math. Soc. 24, 919–944 (2011)

    Article  MATH  Google Scholar 

  15. Dumaz, L., Virág, B.: The right tail exponent of the Tracy–Widom-beta distribution. Ann. Inst. H. Poincaré Probab. Stat. 49(4), 915–933 (2013)

    Article  MATH  ADS  Google Scholar 

  16. Bloemendal, A., Virág, B.: Limits of spiked random matrices I. Probab. Theory Relat. 156, 795–825 (2012)

    Article  Google Scholar 

  17. A. Bloemendal and B. Virág: Limits of spiked random matrices II. arXiv:1109.3704 (2011)

  18. Halperin, B.I.: Green’s functions for a particle in a one-dimensional random potential. Phys. Rev. 139, A104–A117 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  19. Frisch, H.L., Lloyd, S.P.: Electron levels in a one-dimensional lattice. Phys. Rev. 120, 1175–1189 (1960)

    Article  MATH  ADS  Google Scholar 

  20. McKean, H.P.: A limit law for the ground state of Hill’s equation. J. Stat. Phys. 74, 1227 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. Texier, C.: Individual energy level distributions for one-dimensional diagonal and off-diagonal disorder. J. Phys. A 33, 6095 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. Allez, R., Dumaz, L.: Tracy–Widom at high temperature. J. Stat. Phys. 56(6), 1146–1183 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  23. Itô, K., McKean, H.P.: Diffusion Processes and their Sample Paths. Springer, New York (1996)

    MATH  Google Scholar 

  24. Morse, M.: The calculus of variations in the large, American Mathematical Society Colloquium Publications, 18 (1932) (1996 reprint of the original)

  25. Morse, M.: Variational Analysis: Critical Extremals and Sturmian Extensions. Wiley, New York (1973)

    MATH  Google Scholar 

  26. Reid, W.T.: Ordinary Differential Equations. Wiley, New York (1971)

    MATH  Google Scholar 

  27. Reid, W.T.: Riccati Differential Equations. Academic Press, New York (1972)

    MATH  Google Scholar 

  28. Baur, G., Kratz, W.: A general oscillation theorem for selfadjoint differential systems with applications to Sturm–Liouville eigenvalue problems and quadratic functionals. Rend. Circ. Mat. Palermo 2(38), 329–370 (1989)

    Article  MathSciNet  Google Scholar 

  29. Dyson, F.J.: A Brownian-motion model for the eigenvalues of a random matrix. J. Math. Phys. 3, 1191–1198 (1962)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  30. Allez, R., Guionnet, A.: A diffusive matrix model for invariant \(\beta \)-ensembles. Electron. J. Probab. 18(62), 1–30 (2013)

    MathSciNet  Google Scholar 

  31. Rogers, L.C.G., Shi, Z.: Interacting Brownian particles and the Wigner law. Probab. Theory Relat. Fields 95, 555–570 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  32. Allez, R., Bouchaud, J.-P., Guionnet, A.: Invariant \(\beta \)-ensembles and the Gauss–Wigner crossover. Phys. Rev. Lett. 109, 094102 (2012)

    Article  ADS  Google Scholar 

  33. Allez, R., Bouchaud, J.-P., Majumdar, S.N., Vivo, P.: Invariant beta-Wishart ensembles, crossover densities and asymptotic corrections to the Marchenko–Pastur law. J. Phys. A 46, 015001 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  34. Geronimo, J.S., Hill, T.P.: Necessary and sufficient condition that the limit of Stieltjes transforms is a Stieltjes transform. J. Approx. Theory 121, 54–60 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  35. Akhiezer, N.: The Classical Moment Problem. Hafner, New York (1965)

    MATH  Google Scholar 

  36. Makeenko, Y.: Loop equations in matrix models and in 2D quantum gravity. Mod. Phys. Lett. A 6, 1901 (1991)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  37. Moore, G.W.: Matrix models of 2-D gravity and isomonodromic deformation Prog. Theor. Phys. Suppl. 102, 255 (1990)

    Article  ADS  Google Scholar 

  38. Dalley, S., Johnson, C.V., Morris, T.R.: Classification of critical hermitian matrix models. Mod. Phys. Lett. A 6, 439 (1991)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  39. Biane, P.: On the free convolution with a semi-circular distribution. Indiana Univ. Math. J. 46(3), 705–718 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  40. Voiculescu, D.V., Douglas, M.: Large N quantum field theory and matrix models. Free Probab. Theory Fields Inst. Commun. 12, 21–40 (1997)

    Google Scholar 

  41. Ambjorn, J., Greensite, J., Varsted, S.: A non-perturbative definition of 2D quantum gravity by the fifth time action. Phys. Lett. B 249(3), 411–416 (1990)

    Article  ADS  Google Scholar 

  42. Neuberger, H.: Regularized string and flow equations. Nucl. Phys. B 352, 689 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  43. Bowick, M.J., Brézin, E.: Universal scaling of the tail of the density of eigenvalues in random matrix models. Phys. Lett. B 268, 21–28 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  44. Forrester, P.J.: The spectrum edge of random matrix ensembles. Nucl. Phys. B 402, 709–728 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  45. Tracy, C.A., Widom, H.: Level-spacing distributions and the Airy kernel. Commun. Math. Phys. 159(1), 151–174 (1994)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  46. Tracy, C.A., Widom, H.: On orthogonal and symplectic matrix ensembles. Commun. Math. Phys. 177(3), 727–754 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  47. Claeys, T., Krasovsky, I., Its, A.: Higher-order analogues of the Tracy–Widom distribution and the Painlevé II. Commun. Pure Appl. Math. 63(3), 362–412 (2010)

    MATH  MathSciNet  Google Scholar 

  48. Akemann, G., Atkin, M.R.: Higher order analogues of Tracy–Widom distributions via the Lax method. J. Phys. A 46, 015202 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  49. Krishnapur, M., Rider, B., Virág, B.: Universality of the Stochastic Airy Operator. arXiv:1306.4832 (2013)

  50. Llyashenko, Y., Yakovenko, S.: Lectures on Analytic Theory of Ordinary Differential Equations. Graduate Studies in Mathematics, 86, American Mathematical Society (2008)

Download references

Acknowledgments

We are grateful to Joël Bun and Antoine Dahlqvist for interesting discussions on Stieltjes transforms. We also thank anonymous referees for interesting remarks and references in relation with our work. R.A. received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement nr. 258237 and thanks the Statslab in DPMMS, Cambridge for its hospitality. The work of L.D. was supported by the Engineering and Physical Sciences Research Council under grant EP/103372X/1 and L.D. thanks the hospitality of the maths department of TU and the Weierstrass institute in Berlin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romain Allez.

Appendices

Appendix A: Boltzmann Weight of the Hermitian Diffusion Process \(H\)

Let us check that the probability distribution \(P\) defined in (2.1) is a stationary measure of the stochastic differential system (2.4). First notice that, if \(M\) is a \(N\times N\) real matrix, then the gradient of the function \(M\rightarrow \mathrm{Tr}(V(M))\in \mathbb {R}\) with respect to the \(N^2\) entries of the matrix \(M\), is the function \(M\rightarrow V'(M^\dagger )\). Thus, if \(H\) is a Hermitian matrix, we simply have

$$\begin{aligned} \nabla \, \mathrm{Tr}(V(H)) = V'(H). \end{aligned}$$
(9.17)

It remains to check that the probability distribution \(P\) is the unique stationary solution of the Fokker Planck equation satisfied by the (stationary) transition probability of the diffusion process \((H(t))\),

$$\begin{aligned} \frac{\partial P}{\partial t} = 0 = \frac{1}{2}\, \sum _{i,j=1} \frac{\partial }{\partial H_{ij}} \left[ \left( \nabla {\text {Tr}}(V(H))\right) _{ij} P(H) \right] + \frac{1}{2N} \sum _{i,j=1} \frac{1+ \delta _{i=j}}{2} \frac{\partial ^2}{\partial H_{ij}^2} P(H). \end{aligned}$$
(9.18)

The reader may actually check that the function \(P\) as defined in (2.1) satisfies, for any Hermitian matrix \(H\), the following conditions

$$\begin{aligned} \frac{\partial }{\partial H_{ii}} P(H)&=- N \, \left( \nabla {\text {Tr}}(V(H))\right) _{ii} P(H),\nonumber \\ \frac{\partial }{\partial H_{ij}} P(H)= \frac{\partial }{\partial H_{ji}} P(H)&= -2 N \, \left( \nabla {\text {Tr}}(V(H))\right) _{ij} P(H) \, \quad {\text{ if }} \quad i < j, \end{aligned}$$
(9.19)

under which (9.18) trivially holds. The factor \(2\) which appears in the second line (9.19) is due to the symmetry of the matrix \(H\).

Appendix B: Stieltjes Transform Properties

The Stieltjes transform is frequently used in RMT for the study of empirical spectral densities in the large \(N\) limit.

A measure \(\mu \) is characterized by its Stieltjes transform, which is an analytic function \(G: \mathbb H \rightarrow \mathbb H \) (\( \mathbb H \) denotes the open upper half-plane), defined as

$$\begin{aligned} G(z):=\int _\mathbb {R}\frac{\mu (dx)}{x-z}. \end{aligned}$$

We have the following inversion formula valid for any measure \(\mu \) on \(\mathbb {R}\),

$$\begin{aligned} \lim _{\varepsilon \downarrow 0}\int _x^y \mathfrak {I}\, G(\lambda +i \, \varepsilon ) \, d\lambda = \pi \, \mu (x,y) + \frac{\pi }{2}(\mu (\{y\})-\mu (\{x\})) , \end{aligned}$$
(9.20)

where \(\mathfrak {I}z\) denotes the imaginary part of \(z\in \mathbb C \).

When the Stieltjes transform \(G(z)\) has a continuous extension to \(\mathbb {R}\cup \mathbb H \), it is easy to check that \(\mu \) admits a smooth density with respect to the Lebesgue measure.

If \(\mu \) is a probability measure, its Stieltjes transform \(G(iy)\) behaves as \(-1/(iy)\) when \(y\) goes to \(+\infty \). Reciprocally, Akhiezer’s theorem [35], page 93] states a useful criterium characterizing Stieltjes transforms of probability measure: \(G\) is the Stieltjes transform of a probability measure if and only if \(G\) is analytic on \( \mathbb H \) with \(G( \mathbb H ) \subseteq \mathbb H \) and \(G(iy) \sim -1/(iy)\) as \(y \rightarrow + \infty \).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allez, R., Dumaz, L. Random Matrices in Non-confining Potentials. J Stat Phys 160, 681–714 (2015). https://doi.org/10.1007/s10955-015-1258-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-015-1258-1

Keywords

Navigation